

Welcome to pysat’s documentation!

	Introduction

	Citations in the pysat ecosystem

	Installation

	Quick-Start

	Tutorial
	Basics

	Verbosity

	Custom Functions

	Initial Instrument Independence

	Iteration

	Orbit Support

	Iteration and Instrument Independent Analysis

	Summary Flow Charts

	Sample Scientific Analysis
	Seasonal Occurrence by Orbit

	Orbit-by-Orbit Plots

	Seasonal Averaging of Ion Drifts and Density Profiles

	Supported Instruments
	C/NOFS IVM

	C/NOFS PLP

	C/NOFS VEFI

	CHAMP-STAR

	COSMIC GPS

	DE2 LANG

	DE2 NACS

	DE2 RPA

	DE2 WATS

	Demeter IAP

	DMSP IVM

	ICON EUV

	ICON FUV

	ICON IVM

	ICON MIGHTI

	ISS-FPMU

	JRO ISR

	OMNI_HRO

	ROCSAT-1 IVM

	SPORT IVM

	SuperDARN

	SuperMAG

	SW Dst

	SW F107

	SW Kp

	TIMED/SABER

	TIMED/SEE

	UCAR TIEGCM

	Adding a New Instrument
	Naming Conventions

	Required Routines

	Optional Routines and Support

	Logging

	Testing Support

	Data Acknowledgements

	Supported Instrument Templates

	API
	Instrument

	Instrument Methods

	Instrument Templates

	Constellation

	Custom

	Files

	Meta

	Orbits

	Seasonal Analysis

	Utilities

	Contributing
	Short version

	Bug reports

	Feature requests and feedback

	Development

	Pull Request Guidelines

	Frequently Asked Questions

Introduction

Every scientific instrument has unique properties though the general process for
science data analysis is independent of platform. Find and download the data,
write code to load the data, clean the data, apply custom analysis functions,
and plot the results. The Python Satellite Data Analysis Toolkit (pysat)
provides a framework for this general process that builds upon these
commonalities to simplify adding new instruments, reduce data management
overhead, and enable instrument independent analysis routines. Though pysat was
initially designed for in-situ satellite based measurements it aims to support
all instruments in space science.

This document covers installation, a tutorial on pysat including demonstration
code, coverage of supported instruments, an overview of adding new instruments
to pysat, and an API reference.

Logos

Does your project use pysat? If so, grab a “powered by pysat” logo!

[image: _images/poweredbypysat.png]

Citations in the pysat ecosystem

When referring to this software package, please cite the original paper by
Stoneback et al [2018] https://doi.org/10.1029/2018JA025297 as well as the
package https://doi.org/10.5281/zenodo.1199703. Note that this doi will
always point to the latest version of the code. A list of dois for all
versions can be found at the
Zenodo page [https://zenodo.org/record/1199703)].

Example for citation in BibTex for a generalized version:

@misc{pysat200,
 author = {Stoneback, R.A. and
 Klenzing, J.H. and
 Burrell, A.G. and
 Spence, C. and
 Depew, M. and
 Hargrave, N. and
 von Bose, V. and
 Luis, S. and
 Iyer, G.},
 title = {Python Satellite Data Analysis Toolkit (pysat) vX.Y.Z},
 month = jul,
 year = 2019,
 doi = {10.5281/zenodo.1199703},
 url = {https://doi.org/10.5281/zenodo.1199703}
}

Citing the publication:

@article{Stoneback2018,
 author = {Stoneback, R. A. and
 Burrell, A. G. and
 Klenzing, J. and
 Depew, M. D.},
 doi = {10.1029/2018JA025297},
 issn = {21699402},
 journal = {Journal of Geophysical Research: Space Physics},
 number = {6},
 pages = {5271--5283},
 title = {{PYSAT: Python Satellite Data Analysis Toolkit}},
 volume = {123},
 year = {2018}
}

To aid in scientific reproducibility, please include the version number in
publications that use this code. This can be found by invoking
pysat.__version__.

Information for appropriately acknowledging and citing the different instruments
accessed through pysat is sometimes available in the metadata through
inst.meta.acknowledgements and inst.meta.references.
If this information is missing, please consider improving pysat by either
submitting an issue or adding the information yourself.

Installation

Starting from scratch

Python and associated packages for science are freely available. Convenient
science python package setups are available from https://www.python.org/,
Anaconda [https://www.anaconda.com/distribution/], and other locations
(some platform specific). Anaconda also includes a developer environment
that works well with pysat. Core science packages such as numpy, scipy,
matplotlib, pandas and many others may also be installed directly via pip or
your favorite package manager.

For maximum safety, pysat should be installed into its own virtual
environment to ensure there are no conflicts with any system installed Python
distributions.

For MacOS systems it is recommended that gcc is installed via
HomeBrew [https://brew.sh] for compatibility with Fortran code.

brew install gcc

For Windows systems, please see the Windows section below
for setting up a POSIX compatible C/Fortran environment.

To use Anaconda’s tools for creating a suitable virtual environment, for Python
2

conda create -n virt_env_name python=2.7
conda activate virt_env_name
conda install 'numpy<1.19' -c conda

and for Python 3

conda create -n virt_env_name python=3
conda activate virt_env_name
conda install 'numpy<1.19' -c conda

pysat

Pysat itself may be installed from a terminal command line via:

pip install pysat

Note that pysat requires a number of packages that will be
installed automatically if not already present on a system. The
default behavior for updating required libraries already on a system depends
upon the version of pip present.

	beautifulsoup4

	h5py

	lxml

	madrigalWeb

	matplotlib

	netCDF4

	numpy (>=1.12)

	pandas (>=0.23, <0.25)

	PyForecastTools

	pysatCDF

	requests

	scipy

	xarray (<0.15)

The upper caps for packages above will be removed for the upcoming pysat
3.0.0 release.

Development Installation

pysat may also be installed directly from the source repository on github:

git clone https://github.com/pysat/pysat.git
cd pysat
python setup.py install

An advantage to installing through github is access to the development branches.
The latest bugfixes can be found in the develop branch. However, this
branch is not stable (as the name implies). We recommend using this branch in a
virtual environment and using:

git clone https://github.com/pysat/pysat.git
cd pysat
git checkout develop
python setup.py develop

The use of develop rather than install installs the code ‘in-place’, so
any changes to the software do not have to be reinstalled to take effect.

The development version for v3.0 can be found in the develop-3
branch (see above for caveats).

Windows

To get pysat installed in Windows you need a POSIX compatible C/ Fortran
compiling environment. This is required to compile the
pysatCDF [https://github.com/pysat/pysatCDF/] package.

Python environment: Python 2.7.x

	Install MSYS2 from http://repo.msys2.org. The distrib folder contains
msys2-x86_64-latest.exe (64-bit version) to install MSYS2.

	Assuming you installed it in its default location C:\msys64, launch
MSYS2 environment from C:\msys64\msys2.exe. This launches a shell session.

	Now you need to make sure everything is up to date. This terminal command
will run updates:

pacman -Syuu

	After running this command, you will be asked to close the terminal window
using close button and not exit() command. Go ahead and do that.

	Relaunch and run:

pacman -Syuu

again.

	After the second run, you should be up to date. If you run the update command
again, you will be informed that there was nothing more to update. Now you
need to install build tools and your compiler toolchains.:

pacman -S base-devel git mingw-w64-x86_64-toolchain

If it prompts you to make a selection and says (default:all), just press enter. This install may take a bit.

	Now you need to set up your MSYS2 environment to use whatever python interpreter you want to build pysatCDF for. In my case the path was C:\Python27_64, but yours will be wherever python.exe exists.

	Update MSYS2 path to include the folders with python binary and Scripts. To do that, navigate to your home directory in MSYS2. Mine is C:\msys64\home\gayui.

	Edit the .bash_profile file to add the below lines somewhere in the file.:

Add System python
export PATH=$PATH:/c/Python27_64:/c/Python27_64/Scripts

Note the unix-style paths. So C: becomes /c/. If your python was in C:\foo\bar\python you would put /c/foo/bar/python and /c/foo/bar/python/Scripts

	Next step is to add the mingw64 bin folder to your windows system path. Right-click on computer, hit properties. Then click advanced system settings, then environment variables. Find the system variable (as opposed to user variables) named PATH. This is a semicolon delimited list of the OS search paths for binaries. Add another semicolon and the path C:\msys64\mingw64\bin

	Now you should have access to Python from within your MSYS2 environment. And your windows path should have access to the mingw binaries. To verify this, launch the mingw64 MSYS2 environment.:

C:\msys64\mingw64.exe

Run the command:

which python

and confirm that it points to the correct python version you want to be using.

	Microsoft Visual C++ 9.0 is required to compile C sources. Download and
install the right version of Microsoft Visual C++ for Python 2.7
from http://aka.ms/vcpython27

	We are now getting close to installing pysatCDF. Do the following in the
shell environment that is already opened.:

mkdir src
cd src
git clone https://github.com/rstoneback/pysatCDF.git
cd pysatCDF

	Using a text editor of your choice, create a file called setup.cfg in:

C:\msys64\home\gayui\src\pysatCDF

Put the following in the file before saving and closing it.:

[build]
compiler=mingw32

Note

gayui will be replaced with your username

	In your MSYS2 MINGW64 environment, run:

python setup.py install

This should compile and install the package to your site-packages for the python you are using.

	You should now be able to import pysatCDF in your Python environment. If you get an ImportError, restart Python and import again.

Quick-Start

Set Data Directory

Pysat will maintain organization of data from various platforms. Upon the first

import pysat

pysat will remind you to set the top level directory that will hold the data,

pysat.utils.set_data_dir(path=path)

Note the directory path supplied must already exist or an error will be raised.
To check the currently set data directory,

print(pysat.data_dir)

To check if pysat and required packages are working, instantiate one of the
test instruments, and load a day of simulated data. Loading a day of data will
ensure there is no problem with the underlying pandas installation.

inst = pysat.Instrument('pysat', 'testing')
inst.load(2009, 1)
print(inst.data)

To verify xarray is working

inst = pysat.Instrument('pysat', 'testing_xarray')
inst.load(2009, 1)
print(inst.data)

Note

pysat will not allow an Instrument to be instantiated without a
data directory being specified.

Tutorial

	Basics

	Verbosity

	Custom Functions

	Initial Instrument Independence

	Iteration

	Orbit Support
	Ground Based Instruments

	Iteration and Instrument Independent Analysis

	Summary Flow Charts

Basics

The core functionality of pysat is exposed through the pysat.Instrument object.
The intent of the Instrument object is to offer a single interface for
interacting with science data that is independent of measurement platform.
The layer of abstraction presented by the Instrument object allows for things
to occur in the background that can make science data analysis simpler and more
rigorous.

To begin,

import pysat

The data directory pysat looks in for data (pysat_data_dir) needs to be set
upon the first import,

pysat.utils.set_data_dir(path=path_to_existing_directory)

Note

A data directory must be set before any pysat.Instruments may be used
or an error will be raised.

Basic Instrument Discovery

Support for each instrument in pysat is enabled by a suite of methods that
interact with the particular files for that dataset and supply the data within
in a pysat compatible format. A particular data set is identified using
up to four parameters

	Identifier

	Description

	platform

	General platform instrument is on

	name

	Name of the instrument

	tag

	Label for a subset of total data

	sat_id

	Label for instrument sub-group

All supported pysat Instruments for v2.x are stored in the pysat.instruments
submodule. A listing of all currently supported instruments
is available via help,

help(pysat.instruments)

Each instrument listed will support one or more data sets for analysis. The
submodules are named with the convention platform_name. To get
a description of an instrument, along with the supported datasets, use help
again,

help(pysat.instruments.dmsp_ivm)

Further, the dictionary:

pysat.instruments.dmsp_ivm.tags

is keyed by tag with a description of each type of data
the tag parameter selects. The dictionary:

pysat.instruments.dmsp_ivm.sat_ids

indicates which instrument or satellite ids (sat_id) support which tag.
The combination of tag and sat_id select the particular dataset
a pysat.Instrument object will provide and interact with.

Instantiation

To create a pysat.Instrument object, select a platform, instrument name,
and potentially a tag and sat_id, consistent with
the desired data to be analyzed, from one the supported instruments.

To work with plasma data from the
Ion Velocity Meter (IVM) onboard the Defense Meteorological
Satellite Program (DMSP) constellation, use:

dmsp = pysat.Instrument(platform='dmsp', name='ivm', tag='utd', sat_id='f12')

Behind the scenes pysat uses a python module named dmsp_ivm that understands
how to interact with ‘utd’ data for ‘f12’.

Download

Let’s download some data. DMSP data is hosted by the Madrigal database [http://cedar.openmadrigal.org/openmadrigal/], a community resource for
geospace data. The proper process for downloading DMSP and other Madrigal data
is built into the open source
tool madrigalWeb [http://cedar.openmadrigal.org/docs/name/rr_python.html], which
is invoked appropriately by pysat within the dmsp_ivm module. To get DMSP
data specifically all we have to do is invoke the .download() method
attached to the DMSP object. Madrigal requires that users provide their name
and email address as their username and password.

set user and password for Madrigal
user = 'Firstname+Lastname'
password = 'email@address.com'
define date range to download data
start = pysat.datetime(2001, 1, 1)
stop = pysat.datetime(2001, 1, 2)
download data to local system
dmsp.download(start, stop, user=user, password=password)

The data is downloaded to pysat_data_dir/platform/name/tag/, in this case
pysat_data_dir/dmsp/ivm/utd/. At the end of the download, pysat
will update the list of files associated with DMSP.

Some instruments support an improved download experience that ensures
the local system is fully up to date compared to the data source. The command,

dmsp.download_updated_files()

will obtain the full set of files present on the server and compare the
version and revision numbers for the server files with those on the local system.
Any files missing or out of date on the local system are downloaded from the
server. This command downloads, as needed, the entire dataset.

Note

Science data servers may not have the same reliability and
bandwidth as commercial providers

Load Data

Data is loaded into a pysat.Instrument object, in this case dmsp, using the
.load method using year, day of year; date; or filename.

load by year, day of year
dmsp.load(2001, 1)
load by datetime
dmsp.load(date=datetime.datetime(2001, 1, 1))
load by filename
dmsp.load(fname='dms_ut_20010101_12.002.hdf5')
load by filename
dmsp.load(fname=dmsp.files[0])
load by filename
dmsp.load(fname=dmsp.files[datetime.datetime(2001, 1, 1)])

When the pysat load routine runs it stores the instrument data into dmsp.data.
pysat supports the use of two different data structures,
either a pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe], a highly capable structure with
labeled rows and columns, or an xarray DataSet [http://xarray.pydata.org/en/v0.11.3/generated/xarray.Dataset.html] for data sets with
more dimensions. Either way, the full data structure is available at:

all data
dmsp.data

providing full access to the underlying data library functionality. The
type of data structure is flagged at the instrument level with the attribute
inst.pandas_format, True if a DataFrame is returned by the corresponding
instrument module load method.

In addition, convenience access to the data is also available at
the instrument level.

Convenience access
dmsp['ti']
slicing
dmsp[0:10, 'ti']
slicing by date time
dmsp[start:stop, 'ti']

Convenience assignment
dmsp['ti'] = new_array
exploit broadcasting, single value assigned to all times
dmsp['ti'] = single_value
slicing
dmsp[0:10, 'ti'] = sub_array
slicing by date time
dmsp[start:stop, 'ti'] = sub_array

See Instrument for more.

To load data over a season, pysat provides a convenience function that returns
an array of dates over a season. The season need not be continuous.

import matplotlib.pyplot as plt
import numpy as np
import pandas

create empty series to hold result
mean_ti = pandas.Series()

get list of dates between start and stop
start = dt.datetime(2001, 1, 1)
stop = dt.datetime(2001, 1, 10)
date_array = pysat.utils.time.create_date_range(start, stop)

iterate over season, calculate the mean Ion Temperature
for date in date_array:
 # load data into dmsp.data
 dmsp.load(date=date)
 # check if data present
 if not dmsp.empty:
 # isolate data to locations near geomagnetic equator
 idx, = np.where((dmsp['mlat'] < 5) & (dmsp['mlat'] > -5))
 # downselect data
 dmsp.data = dmsp[idx]
 # compute mean ion temperature using pandas functions and store
 mean_ti[dmsp.date] = dmsp['ti'].abs().mean(skipna=True)

plot the result using pandas functionality
mean_ti.plot(title='Mean Ion Temperature near Magnetic Equator')
plt.ylabel(dmsp.meta['ti', dmsp.desc_label] + ' (' +
 dmsp.meta['ti', dmsp.units_label] + ')')

Note, the numpy.where may be removed using the convenience access to the
attached pandas data object.

idx, = np.where((dmsp['mlat'] < 5) & (dmsp['mlat'] > -5))
dmsp.data = dmsp[idx] = dmsp.data.iloc[idx

is equivalent to

dmsp.data = vefi[(dmsp['mlat'] < 5) & (dmsp['mlat'] > -5)]

Clean Data

Before data is available in .data it passes through an instrument specific
cleaning routine. The amount of cleaning is set by the clean_level keyword,
provided at instantiation. The level defaults to ‘clean’.

dmsp = pysat.Instrument(platform='dmsp', name='ivm', tag='utd', sat_id='f12',
 clean_level=None)
dmsp = pysat.Instrument(platform='dmsp', name='ivm', tag='utd', sat_id='f12',
 clean_level='clean')

Four levels of cleaning may be specified,

	clean_level

	Result

	clean

	Generally good data

	dusty

	Light cleaning, use with care

	dirty

	Minimal cleaning, use with caution

	none

	No cleaning, use at your own risk

The user provided cleaning level is stored on the Instrument object at
dmsp.clean_level. The details of the cleaning will generally vary greatly
between instruments.

Metadata

Metadata is also stored along with the main science data. pysat presumes
a minimum default set of metadata that may be arbitrarily expanded.
The default parameters are driven by the attributes required by public science
data files, like those produced by the Ionospheric Connections Explorer
(ICON) [http://icon.ssl.berkeley.edu].

	Metadata

	Description

	axis

	Label for plot axes

	desc

	Description of variable

	fill

	Fill value for bad data points

	label

	Label used for plots

	name

	Name of variable, or long_name

	notes

	Notes about variable

	min

	Maximum valid value

	max

	Minimum valid value

	scale

	Axis scale, linear or log

	units

	Variable units

all metadata
dmsp.meta.data
variable metadata
dmsp.meta['ti']
units using standard labels
dmsp.meta['ti'].units
units using general labels
dmsp.meta['ti', dmsp.units_label]
update units for ti
dmsp.meta['ti'] = {'units':'new_units'}
update display name, long_name
dmsp.meta['ti'] = {'long_name':'Fancy Name'}
add new meta data
dmsp.meta['new'] = {dmsp.units_label:'fake',
 dmsp.name_label:'Display'}

The string values used within metadata to identify the parameters above
are all attached to the instrument object as dmsp.*_label, or
dmsp.units_label, dmsp.min_label, and dmsp.notes_label, etc.

All variables must have the same metadata parameters. If a new parameter
is added for only one data variable, then the remaining data variables will get
a null value for that metadata parameter.

Data may be assigned to the instrument, with or without metadata.

assign data alone
dmsp['new_data'] = new_data
assign data with metadata
the data must be keyed under 'data'
all other dictionary inputs are presumed to be metadata
dmsp['new_data'] = {'data': new_data,
 dmsp.units_label: new_unit,
 'new_meta_data': new_value}
alter assigned metadata
dmsp.meta['new_data', 'new_meta_data'] = even_newer_value

The labels used for identifying metadata may be provided by the user at
Instrument instantiation and do not need to conform with what is in the file:

dmsp = pysat.Instrument(platform='dmsp', name='ivm', tag='utd', sat_id='f12',
 clean_level='dirty', units_label='new_units')
dmsp.load(2001, 1)
dmsp.meta['ti', 'new_units']
dmsp.meta['ti', dmsp.units_label]

While this feature doesn’t require explicit support on the part of an instrument
module developer, code that does not use the metadata labels may not always
work when a user invokes this functionality.

pysat’s metadata object is case insensitive but case preserving. Thus, if
a particular Instrument uses ‘units’ for units metadata, but a separate
package that operates via pysat but uses ‘Units’ or even ‘UNITS’, the code
will still function:

the following are all equivalent
dmsp.meta['TI', 'Long_Name']
dmsp.meta['Ti', 'long_Name']
dmsp.meta['ti', 'Long_NAME']

Note

While metadata access is case-insensitive, data access is case-sensitive.

Verbosity

Pysat uses Python’s standard
logging tools [https://docs.python.org/3/library/logging.html]
to control the verbosity of output. By default, only logger.warning messages
are shown. For more detailed instrument output, you may change the
logging level.

from pysat import logger, logging
logger.set_level(logging.INFO)

The logging level will be applied to all instruments loaded by pysat.

Custom Functions

Science analysis is built upon custom data processing. To simplify this task and
enable instrument independent analysis, custom functions may be attached to the
Instrument object. Each function is run automatically when new data is loaded
before it is made available in inst.data.

This feature enables a user to hand an Instrument object to an independent
routine and ensure any desired customizations required are performed without
any additional user intervention. This feature enables for the transparent
modification of a dataset in between its state at rest on disk and when the data
becomes available for use at inst.data.

Warning

Custom arguments and keywords are supported for these methods.
However, these arguments and keywords are only evaluated initially when the
method is attached to an Instrument object. Thus the objects passed in must be
static or capable of updating themselves from within the custom method itself.

Modify Functions

The instrument object is passed to function in place, there
is no Instrument copy made in memory. The method is expected to modify the
supplied Instrument object directly. ‘Modify’ methods are not allowed to return
any information via the method itself.

def custom_func_modify(inst, optional_param=False):
 """Modify a pysat.Instrument object in place

 Parameters

 inst : pysat.Instrument
 Object to be modified
 optional_param : stand-in
 Placeholder to indicate support for custom keywords
 and arguments
 """

 if optional_param:
 inst['double_mlt'] = 2.0 * inst['mlt']
 else:
 inst['double_mlt'= -2.0 * inst['mlt']
 return

Add Functions

A copy of the Instrument is passed to the method thus any changes made
directly to the object are lost. The data to be added must be returned via
‘return’ in the method and is added to the true Instrument object by pysat.
Multiple return types are supported.

	Type

	Notes

	tuple

	(data_name, data_to_be_added)

	dict

	Data to be added keyed by data_name

	Iterable

	((name1, name2, …), (data1, data2, …))

	Series

	Variable name must be in .name

	DataFrame

	Columns used as variable names

	DataArray

	Variable name must be in .name

def custom_func_add(inst, optional_param=False):
 """Calculate data to be added to pysat.Instrument object

 Parameters

 inst : pysat.Instrument
 pysat will add returned data to this object
 optional_param : stand-in
 Placeholder indicated support for custom keywords
 and arguments
 """

 return ('double_mlt', 2.0 * inst['mlt'])

Add Function Including Metadata

Metadata may also be returned when using a dictionary object as the return
type. In this case, the data must be in ‘data’, with other keys interpreted
as metadata parameters. Multiple data variables may be added in this case
only when using the DataFrame.

def custom_func_add(inst, optional_param1=False, optional_param2=False):
 return {'data': 2.*inst['mlt'], 'name': 'double_mlt',
 'long_name': 'doubledouble', 'units': 'hours'}

Attaching Custom Function

Custom methods must be attached to an Instrument object for pysat
to automatically apply the method upon ever load.

ivm.custom.attach(custom_func_modify, 'modify', optional_param2=True)
ivm.load(2009, 1)
print(ivm['double_mlt'])
ivm.custom.attach(custom_func_add, 'add', optional_param2=True)
can also set via a string name for method
ivm.custom.attach('custom_func_add', 'add', optional_param2=False)
set bounds limiting the file/date range the Instrument will iterate over
ivm.bounds = (start, stop)
perform analysis. Whatever modifications are enabled by the custom
methods are automatically available within the custom analysis
custom_complicated_analysis_over_season(ivm)

The output of custom_func_modify will always be available from instrument
object, regardless of what level the science analysis is performed.

We can repeat the earlier DMSP example, this time using nano-kernel
functionality.

import matplotlib.pyplot as plt
import numpy as np
import pandas

create custom function
def filter_dmsp(inst, limit=None):
 # isolate data to locations near geomagnetic equator
 idx, = np.where((dmsp['mlat'] < 5) & (dmsp['mlat'] > -5))
 # downselect data
 dmsp.data = dmsp[idx]

get list of dates between start and stop
start = dt.datetime(2001, 1, 1)
stop = dt.datetime(2001, 1, 10)
date_array = pysat.utils.time.create_date_range(start, stop)

create empty series to hold result
mean_ti = pandas.Series()

instantiate pysat.Instrument
dmsp = pysat.Instrument(platform='dmsp', name='ivm', tag='utd',
 sat_id='f12')
attach custom method from above
dmsp.custom.attach(filter_dmsp, 'modify')

iterate over season, calculate the mean Ion Temperature
for date in date_array:
 # load data into dmsp.data
 dmsp.load(date=date)
 # check if data present
 if not dmsp.empty:
 # compute mean ion temperature using pandas functions and store
 mean_ti[dmsp.date] = dmsp['ti'].mean(skipna=True)

plot the result using pandas functionality
mean_ti.plot(title='Mean Ion Temperature near Magnetic Equator')
plt.ylabel(dmsp.meta['ti', dmsp.desc_label] + ' (' +
 dmsp.meta['ti', dmsp.units_label] + ')')

Note the same result is obtained. The DMSP instrument object and analysis are
performed at the same level, so there is no strict gain by using the pysat
nano-kernel in this simple demonstration. However, we can use the nano-kernel
to translate this daily mean into an versatile instrument independent function.

Initial Instrument Independence

Adding Instrument Independence

pysat features enable the development of instrument independent methods, code
that can work on many if not all pysat supported datasets. This section
continues the evolution of the simple DMSP temperature averaging method
presented earlier towards greater instrument independence as well as
application to non-DMSP data sets.

import matplotlib.pyplot as plt
import numpy as np
import pandas

def daily_mean(inst, start, stop, data_label):
 """Perform daily mean of data_label over season

 Parameters

 inst : pysat.Instrument
 Instrument object
 start : datetime.datetime
 Start date
 stop : datetime.datetime
 Stop date
 data_label : string
 Identifier for variable to be averaged
 """

 # create empty series to hold result
 mean_val = pandas.Series()

 # get list of dates between start and stop
 date_array = pysat.utils.time.create_date_range(start, stop)

 # iterate over season, calculate the mean
 for date in date_array:
 inst.load(date=date)
 if not inst.data.empty:
 # compute absolute mean using pandas functions and store
 mean_val[inst.date] = inst[data_label].abs().mean(skipna=True)
 return mean_val

instantiate pysat.Instrument object to get access to data
vefi = pysat.Instrument(platform='cnofs', name='vefi', tag='dc_b')

define custom filtering method
def filter_inst(inst, data_label, data_gate):
 # select data within +/- data gate
 min_gate = -np.abs(data_gate)
 max_gate = np.abs(data_gate)
 idx, = np.where((inst[data_label] < max_gate) &
 (inst[data_label] > min_gate))
 inst.data = inst[idx]
 return

attach filter to vefi object, function is run upon every load
vefi.custom.add(filter_inst, 'modify', 'latitude', 5.)

make a plot of daily mean of 'db_mer'
mean_dB = daily_mean(vefi, start, stop, 'dB_mer')

plot the result using pandas functionality
mean_dB.plot(title='Absolute Daily Mean of '
 + vefi.meta['dB_mer'].long_name)
plt.ylabel('Absolute Daily Mean (' + vefi.meta['dB_mer'].units + ')')

The pysat nano-kernel lets you modify any data set as needed so that you can
get the daily mean you desire, without having to modify the daily_mean function.

Check the instrument independence using a different instrument. Whatever
instrument is supplied may be modified in arbitrary ways by the nano-kernel.

Note

Downloading data for COSMIC requires an account at the Cosmic Data Analysis
and Archive Center (CDAAC) [https://cdaac-www.cosmic.ucar.edu].

cosmic = pysat.Instrument('cosmic', 'gps', tag='ionprf', clean_level='clean',
 altitude_bin=3)
attach filter method
cosmic.custom.add(filter_inst, 'modify', 'edmaxlat', 15.)
perform average
mean_max_dens = daily_mean(cosmic, start, stop, 'edmax')

plot the result using pandas functionality
long_name = cosmic.meta[data_label, cosmic.name_label]
units = cosmic.meta[data_label, cosmic.units_label]
mean_max_dens.plot(title='Absolute Daily Mean of ' + long_name)
plt.ylabel('Absolute Daily Mean (' + units + ')')

daily_mean now works for any instrument, as long as the data to be averaged is
1D. This can be fixed.

Partial Independence from Dimensionality

This section continues the evolution of the daily_mean method
presented earlier towards greater instrument independence by supporting
more than 1D datasets.

import pandas
import pysat

def daily_mean(inst, start, stop, data_label):

 # create empty series to hold result
 mean_val = pandas.Series()
 # get list of dates between start and stop
 date_array = pysat.utils.time.create_date_range(start, stop)
 # iterate over season, calculate the mean
 for date in date_array:
 inst.load(date=date)
 if not inst.data.empty:
 # compute mean absolute using pandas functions and store
 # data could be an image, or lower dimension, account for 2D and lower
 data = inst[data_label]
 if isinstance(data.iloc[0], pandas.DataFrame):
 # 3D data, 2D data at every time
 data_panel = pandas.Panel.from_dict(dict([(i, data.iloc[i]) for i in xrange(len(data))]))
 mean_val[inst.date] = data_panel.abs().mean(axis=0,skipna=True)
 elif isinstance(data.iloc[0], pandas.Series):
 # 2D data, 1D data for each time
 data_frame = pandas.DataFrame(data.tolist())
 data_frame.index = data.index
 mean_val[inst.date] = data_frame.abs().mean(axis=0, skipna=True)
 else:
 # 1D data
 mean_val[inst.date] = inst[data_label].abs().mean(axis=0,skipna=True)

return mean_val

This code works for 1D, 2D, and 3D datasets, regardless of instrument platform,
with only some minor changes from the initial VEFI specific code.
In-situ measurements, remote profiles, and remote images. It is true the nested
if statements aren’t the most elegant. Particularly the 3D case. However this
code puts the data into an appropriate structure for pandas to align each of
the profiles/images by their respective indices before performing the average.
Note that the line to obtain the arithmetic mean is the same in all cases,
.mean(axis=0, skipna=True). There is an opportunity here for pysat to clean up
the little mess caused by dimensionality.

import pandas
import pysat

def daily_mean(inst, start, stop, data_label):

 # create empty series to hold result
 mean_val = pandas.Series()
 # get list of dates between start and stop
 date_array = pysat.utils.time.create_date_range(start, stop)
 # iterate over season, calculate the mean
 for date in date_array:
 inst.load(date=date)
 if not inst.data.empty:
 # compute mean absolute using pandas functions and store
 # data could be an image, or lower dimension, account for 2D and lower
 data = inst[data_label]
 data = pysat.ssnl.computational_form(data)
 mean_val[inst.date] = data.abs().mean(axis=0, skipna=True)

return mean_val

Iteration

The seasonal analysis loop is commonly repeated in data analysis:

vefi = pysat.Instrument(platform='cnofs', name='vefi', tag='dc_b')
date_array = pysat.utils.time.create_date_range(start, stop)
for date in date_array:
 vefi.load(date=date)
 print('Maximum meridional magnetic perturbation ', vefi['dB_mer'].max())

Iteration support is built into the Instrument object to support this and
similar cases. The whole of a data set may be iterated over on a daily basis
using

for vefi in vefi:
 print('Maximum meridional magnetic perturbation ', vefi['dB_mer'].max())

Each loop of the python for iteration initiates a vefi.load() for the next date,
starting with the first available date. By default the instrument instance will
iterate over all available data. To control the range, set the instrument bounds,

multi-season season
vefi.bounds = ([start1, start2], [stop1, stop2])
continuous season
vefi.bounds = (start, stop)
iterate over custom season
for vefi in vefi:
 print('Maximum meridional magnetic perturbation ', vefi['dB_mer'].max())

The output is,

Returning cnofs vefi dc_b data for 05/09/10
Maximum meridional magnetic perturbation 19.3937
Returning cnofs vefi dc_b data for 05/10/10
Maximum meridional magnetic perturbation 23.745
Returning cnofs vefi dc_b data for 05/11/10
Maximum meridional magnetic perturbation 25.673
Returning cnofs vefi dc_b data for 05/12/10
Maximum meridional magnetic perturbation 26.583

So far, the iteration support has only saved a single line of code, the
.load line. However, this line in the examples above is tied to loading by date.
What if we wanted to load by file instead? This would require changing the code.
However, with the abstraction provided by the Instrument iteration, that is no
longer the case.

vefi.bounds('filename1', 'filename2')
for vefi in vefi:
 print('Maximum meridional magnetic perturbation ', vefi['dB_mer'].max())

For VEFI there is only one file per day so there is no practical difference
between the previous example. However, for instruments that have more than one
file a day, there is a difference.

Building support for this iteration into the mean_day example is easy.

import pandas
import pysat

def daily_mean(inst, data_label):

 # create empty series to hold result
 mean_val = pandas.Series()

 for inst in inst:
 if not inst.data.empty:
 # compute mean absolute using pandas functions and store
 # data could be an image, or lower dimension, account for 2D and lower
 data = inst[data_label]
 data = pysat.ssnl.computational_form(data)
 mean_val[inst.date] = data.abs().mean(axis=0, skipna=True)

 return mean_val

Since bounds are attached to the Instrument object, the start and stop dates
for the season are no longer required as inputs. If a user forgets to specify
the bounds, the loop will start on the first day of data and end on the last day.

make a plot of daily dB_mer
vefi.bounds = (start, stop)
mean_dB = daily_mean(vefi, 'dB_mer')

plot the result using pandas functionality
variable_str = vefi.meta['dB_mer', vefi.name_label]
units_str = vefi.meta['dB_mer', vefi.units_label]
mean_dB.plot(title='Absolute Daily Mean of ' + variable_str)
plt.ylabel('Absolute Daily Mean ('+ units_str +')')

The abstraction provided by the iteration support is also used for the next
section on orbit data.

Orbit Support

Pysat has functionality to determine orbits on the fly from loaded data.
These orbits will span day breaks as needed (generally). To use any of
these orbit features, information about
the orbit needs to be provided at initialization. The ‘index’ is the name of
the data to be used for determining orbits, and ‘kind’ indicates type of orbit.
See pysat.Orbits for latest inputs.

There are several orbits to choose from,

	kind

	method

	local time

	Uses negative gradients to delineate orbits

	longitude

	Uses negative gradients to delineate orbits

	polar

	Uses sign changes to delineate orbits

	orbit

	Uses any change in value to delineate orbits

Changes in universal time are also used to delineate orbits. Pysat compares any
gaps to the supplied orbital period, nominally assumed to be 97 minutes. As
orbit periods aren’t constant, a 100% success rate is not be guaranteed.

info = {'index': 'mlt', 'kind': 'local time'}
ivm = pysat.Instrument(platform='cnofs', name='ivm', orbit_info=info,
 clean_level='None')

Orbit determination acts upon data loaded in the ivm object, so to begin we
must load some data.

ivm.load(date=start)

Orbits may be selected directly from the attached ivm.orbit class. The data
for the orbit is stored in ivm.data.

In [50]: ivm.orbits[1]
Out[50]:
Returning cnofs ivm data for 12/27/12
Returning cnofs ivm data for 12/28/12
Loaded Orbit:0

Note that getting the first orbit caused pysat to load the day previous, and
then back to the current day. Orbits are zero indexed.
pysat is checking here if the first orbit for 12/28/2012 actually started on
12/27/2012. In this case it does.

In [51]: ivm[0:5, 'mlt']
Out[51]:
2012-12-27 23:05:14.584000 0.002449
2012-12-27 23:05:15.584000 0.006380
2012-12-27 23:05:16.584000 0.010313
2012-12-27 23:05:17.584000 0.014245
2012-12-27 23:05:18.584000 0.018178
Name: mlt, dtype: float32

In [52]: ivm[-5:, 'mlt']
Out[52]:
2012-12-28 00:41:50.563000 23.985415
2012-12-28 00:41:51.563000 23.989031
2012-12-28 00:41:52.563000 23.992649
2012-12-28 00:41:53.563000 23.996267
2012-12-28 00:41:54.563000 23.999886
Name: mlt, dtype: float32

Let’s go back an orbit.

In [53]: ivm.orbits.prev()
Out[53]:
Returning cnofs ivm data for 12/27/12
Loaded Orbit:15

In [54]: ivm[-5:, 'mlt']
Out[54]:
2012-12-27 23:05:09.584000 23.982796
2012-12-27 23:05:10.584000 23.986725
2012-12-27 23:05:11.584000 23.990656
2012-12-27 23:05:12.584000 23.994587
2012-12-27 23:05:13.584000 23.998516
Name: mlt, dtype: float32

pysat loads the previous day, as needed, and returns the last orbit for
12/27/2012 that does not (or should not) extend into 12/28.

If we continue to iterate orbits using

ivm.orbits.next()

eventually the next day will be loaded to try and form a complete orbit. You
can skip the iteration and just go for the last orbit of a day,

In[] : ivm.orbits[-1]
Out[]:
Returning cnofs ivm data for 12/29/12
Loaded Orbit:1

In[72] : ivm[:5, 'mlt']
Out[72]:
2012-12-28 23:03:34.160000 0.003109
2012-12-28 23:03:35.152000 0.007052
2012-12-28 23:03:36.160000 0.010996
2012-12-28 23:03:37.152000 0.014940
2012-12-28 23:03:38.160000 0.018884
Name: mlt, dtype: float32

In[73] : ivm[-5:, 'mlt']
Out[73]:
2012-12-29 00:40:13.119000 23.982937
2012-12-29 00:40:14.119000 23.986605
2012-12-29 00:40:15.119000 23.990273
2012-12-29 00:40:16.119000 23.993940
2012-12-29 00:40:17.119000 23.997608
Name: mlt, dtype: float32

Pysat loads the next day of data to see if the last orbit on 12/28/12 extends
into 12/29/12, which it does. Note that the last orbit of 12/28/12 is the same
as the first orbit of 12/29/12. Thus, if we ask for the next orbit,

In[] : ivm.orbits.next()
Loaded Orbit:2

pysat will indicate it is the second orbit of the day. Going back an orbit
gives us orbit 16, but referenced to a different day. Earlier, the same orbit
was labeled orbit 1.

In[] : ivm.orbits.prev()
Returning cnofs ivm data for 12/28/12
Loaded Orbit:16

Orbit iteration is built into ivm.orbits just like iteration by day is built
into ivm.

start = [pandas.datetime(2009, 1, 1), pandas.datetime(2010, 1, 1)]
stop = [pandas.datetime(2009, 4, 1), pandas.datetime(2010, 4, 1)]
ivm.bounds = (start, stop)
for ivm in ivm.orbits:
 print 'next available orbit ', ivm.data

Ground Based Instruments

The nominal breakdown of satellite data into discrete orbits isn’t typically
as applicable for ground based instruments, each of which makes exactly one
orbit per day. However, as the orbit iterator triggers off of
negative gradients in a variable, a change in sign, or any change
in a value, this functionality may be used to break a ground based data set
into alternative groupings, as appropriate and desired.

As the orbit iterator defaults to an orbit period consistent with Low
Earth Orbit, the expected period of the ‘orbits’ must be provided at
Instrument instantiation. Given the orbit heritage, it is assumed that
there is a small amount of variation in the orbit period. pysat will actively
filter ‘orbits’ that are inconsistent with the prescribed orbit period.

Iteration and Instrument Independent Analysis

The combination of iteration and instrument independence supports
generalizing daily_mean method introduced earlier in the tutorial
into two functions, one that averages by day, the other by orbit.
Strictly speaking, the daily_mean above already does this with the right input,
as shown

mean_daily_val = daily_mean(vefi, 'dB_mer')
mean_orbit_val = daily_mean(vefi.orbits, 'dB_mer')

However, the output of the by_orbit attempt gets rewritten for most orbits
since the output from daily_mean is stored by date. Though this could be fixed,
supplying an instrument object/iterator in one case and an orbit iterator in
the other might be a bit inconsistent. Even if not, let’s try another route.

We also don’t want to maintain two code bases that do almost the same thing.
So instead, let’s create three functions, two of which simply call a hidden
third.

Iteration Independence

def daily_mean(inst, data_label):
 """Mean of data_label by day/file over Instrument.bounds"""
 return _core_mean(inst, data_label, by_day=True)

def by_orbit_mean(inst, data_label):
 """Mean of data_label by orbit over Instrument.bounds"""
 return _core_mean(inst, data_label, by_orbit=True)

def _core_mean(inst, data_label, by_orbit=False, by_day=False):

 if by_orbit:
 iterator = inst.orbits
 elif by_day:
 iterator = inst
 else:
 raise ValueError('A choice must be made, by day/file, or by orbit')
 if by_orbit and by_day:
 raise ValueError('A choice must be made, by day/file, or by orbit')

 # create empty series to hold result
 mean_val = pandas.Series()
 # iterate over season, calculate the mean
 for inst in iterator:
 if not inst.data.empty:
 # compute mean absolute using pandas functions and store
 # data could be an image, or lower dimension, account for 2D and lower
 data = inst[data_label]
 data.dropna(inplace=True)

 if by_orbit:
 date = inst.data.index[0]
 else:
 date = inst.date

 data = pysat.ssnl.computational_form(data)
 mean_val[date] = data.abs().mean(axis=0, skipna=True)

 del iterator
 return mean_val

The addition of a few more lines to the daily_mean function adds support for
averages by orbit, or by day, for any platform with data 3D or less. The date
issue and the type of iteration are solved with simple if else checks. From a
practical perspective, the code doesn’t really deviate from the first solution
of simply passing in vefi.orbits, except for the fact that the .orbits switch
is ‘hidden’ in the code. NaN values are also dropped from the data. If the
first element is a NaN, it isn’t handled by the simple instance check.

A name change and a couple more dummy functions separates out the orbit vs
daily iteration clearly, without having multiple codebases. Iteration by file
and by date are handled by the same Instrument iterator, controlled by the
settings in Instrument.bounds. A by_file_mean was not created because bounds
could be set by date and then by_file_mean applied. Of course this could set
up to produce an error. However, the settings on Instrument.bounds controls
the iteration type between files and dates, so we maintain this view with the
expressed calls. Similarly, the orbit iteration is a separate iterator, with a
separate call. This technique above is used by other seasonal analysis routines
in pysat.

You may notice that the mean call could also easily be replaced by a median, or
even a mode. We might also want to return the standard deviation, or appropriate
measure. Perhaps another level of generalization is needed?

Summary Flow Charts

[image: _images/pysat_load_flow_chart.png]

Sample Scientific Analysis

Pysat tends to reduce certain science data investigations to the construction
of a routine(s) that makes that investigation unique, a call to a seasonal
analysis routine, and some plotting commands. Several demonstrations are
offered in this section. The full code for each example is available in the
repository in the demo folder.

Seasonal Occurrence by Orbit

How often does a particular thing occur on a orbit-by-orbit basis? Let’s find
out. For VEFI, let us calculate the occurrence of a positive perturbation in
the meridional component of the geomagnetic field.

"""
Demonstrates iterating over an instrument data set by orbit and determining
the occurrent probability of an event occurring.
"""

import os
import pysat
import matplotlib.pyplot as plt
import numpy as np

set the directory to save plots to
results_dir = ''

select vefi dc magnetometer data, use longitude to determine where
there are changes in the orbit (local time info not in file)
orbit_info = {'index': 'longitude', 'kind': 'longitude'}
vefi = pysat.Instrument(platform='cnofs', name='vefi', tag='dc_b',
 clean_level=None, orbit_info=orbit_info)

define function to remove flagged values
def filter_vefi(inst):
 idx, = np.where(inst['B_flag'] == 0)
 inst.data = inst.data.iloc[idx]
 return

vefi.custom.add(filter_vefi, 'modify')
set limits on dates analysis will cover, inclusive
start = pysat.datetime(2010, 5, 9)
stop = pysat.datetime(2010, 5, 15)

if there is no vefi dc magnetometer data on your system, then run command
below where start and stop are pandas datetimes (from above)
pysat will automatically register the addition of this data at the end of
download
vefi.download(start, stop)

leave bounds unassigned to cover the whole dataset (comment out lines below)
vefi.bounds = (start, stop)

perform occurrence probability calculation
any data added by custom functions is available within routine below
ans = pysat.ssnl.occur_prob.by_orbit2D(vefi, [0, 360, 144], 'longitude',
 [-13, 13, 104], 'latitude', ['dB_mer'],
 [0.], returnBins=True)

a dict indexed by data_label is returned
in this case, only one, we'll pull it out
ans = ans['dB_mer']

plot occurrence probability
f, axarr = plt.subplots(2, 1, sharex=True, sharey=True)
masked = np.ma.array(ans['prob'], mask=np.isnan(ans['prob']))
im = axarr[0].pcolor(ans['bin_x'], ans['bin_y'], masked)
axarr[0].set_title('Occurrence Probability Delta-B Meridional > 0')
axarr[0].set_ylabel('Latitude')
axarr[0].set_yticks((-13, -10, -5, 0, 5, 10, 13))
axarr[0].set_ylim((ans['bin_y'][0], ans['bin_y'][-1]))
plt.colorbar(im, ax=axarr[0], label='Occurrence Probability')

im = axarr[1].pcolor(ans['bin_x'], ans['bin_y'], ans['count'])
axarr[1].set_title('Number of Orbits in Bin')
axarr[1].set_xlabel('Longitude')
axarr[1].set_xticks((0, 60, 120, 180, 240, 300, 360))
axarr[1].set_xlim((ans['bin_x'][0], ans['bin_x'][-1]))
axarr[1].set_ylabel('Latitude')
plt.colorbar(im, ax=axarr[1], label='Counts')

f.tight_layout()
plt.savefig(os.path.join(results_dir, 'ssnl_occurrence_by_orbit_demo'))
plt.close()

Result

[image: _images/ssnl_occurrence_by_orbit_demo.png]
The top plot shows the occurrence probability of a positive magnetic field
perturbation as a function of geographic longitude and latitude. The bottom
plot shows the number of times the satellite was in each bin with data
(on per orbit basis). Individual orbit tracks may be seen. The hatched pattern
is formed from the satellite traveling North to South and vice-versa. At the
latitudinal extremes of the orbit the latitudinal velocity goes through zero
providing a greater coverage density. The satellite doesn’t return to the same
locations on each pass so there is a reduction in counts between orbit tracks.
All local times are covered by this plot, over-representing the coverage of a
single satellite.

The horizontal blue band that varies in latitude as a function of longitude is
the location of the magnetic equator. Torque rod firings that help C/NOFS
maintain proper attitude are performed at the magnetic equator. Data during
these firings is excluded by the custom function attached to the vefi
instrument object.

Orbit-by-Orbit Plots

Plotting a series of orbit-by-orbit plots is a great way to become familiar
with a data set. If the data set doesn’t come with orbit information, this can
be a challenge. Orbits also go past day breaks, so if data comes in daily files
this requires loading multiple files at once, joining the data together, etc.
pysat goes through that trouble for you.

import os
import pysat
import matplotlib.pyplot as plt

set the directory to save plots to
results_dir = ''

select vefi dc magnetometer data, use longitude to determine where
there are changes in the orbit (local time info not in file)
orbit_info = {'index': 'longitude', 'kind': 'longitude'}
vefi = pysat.Instrument(platform='cnofs', name='vefi', tag='dc_b',
 clean_level=None, orbit_info=orbit_info)

set limits on dates analysis will cover, inclusive
start = pysat.datetime(2010, 5, 9)
stop = pysat.datetime(2010, 5, 12)

if there is no vefi dc magnetometer data on your system
then run command below
where start and stop are pandas datetimes (from above)
pysat will automatically register the addition of this
data at the end of download
vefi.download(start, stop)

leave bounds unassigned to cover the whole dataset
vefi.bounds = (start, stop)

for orbit_count, vefi in enumerate(vefi.orbits):
 # for each loop pysat puts a copy of the next available
 # orbit into vefi.data
 # changing .data at this level does not alter other orbits
 # reloading the same orbit will erase any changes made

 # satellite data can have time gaps, which leads to plots
 # with erroneous lines connecting measurements on
 # both sides of the gap
 # command below fills in any data gaps using a
 # 1-second cadence with NaNs
 # see pandas documentation for more info
 vefi.data = vefi.data.resample('1S', fill_method='ffill',
 limit=1, label='left')

 f, ax = plt.subplots(7, sharex=True, figsize=(8.5,11))

 ax[0].plot(vefi['longitude'], vefi['B_flag'])
 ax[0].set_title(' '.join((vefi.data.index[0].ctime(),'-',
 vefi.data.index[-1].ctime())))
 ax[0].set_ylabel('Interp. Flag')
 ax[0].set_ylim((0, 2))

 p_params = ['B_north', 'B_up', 'B_west',
 'dB_mer', 'dB_par', 'dB_zon']
 for a, param in zip(ax[1:], p_params):
 a.plot(vefi['longitude'], vefi[param])
 a.set_title(vefi.meta[param].long_name)
 a.set_ylabel(vefi.meta[param].units)

 ax[6].set_xlabel(vefi.meta['longitude'].long_name)
 ax[6].set_xticks([0, 60, 120, 180, 240, 300, 360])
 ax[6].set_xlim((0, 360))

 f.tight_layout()
 fname = 'orbit_{num:05}.png'.format(num=orbit_count)
 plt.savefig(os.path.join(results_dir, fname))
 plt.close()

Sample Output (first orbit only)

[image: _images/orbit_00000.png]

Seasonal Averaging of Ion Drifts and Density Profiles

In-situ measurements of the ionosphere by the Ion Velocity Meter onboard C/NOFS
provides information on plasma density, composition, ion temperature, and ion
drifts. This provides a great deal of information on the ionosphere though this
information is limited to the immediate vicinity of the satellite. COSMIC GPS
measurements, with some processing, provide information on the vertical
electron density distribution in the ionosphere. The vertical motion of ions
measured by IVM should be reflected in the vertical plasma densities measured
by COSMIC. To look at this relationship over all longitudes and local times,
for magnetic latitudes near the geomagnetic equator, the code excerpts below
provides a framework for the user. The full code can be found at
<https://github.com/pysat/pysat/blob/main/demo/cosmic_and_ivm_demo.py>_

Note the same averaging routine is used for both COSMIC and IVM, and that both
1D and 2D data are handled correctly.

Note

Downloading data for COSMIC requires an account at the Cosmic Data Analysis
and Archive Center (CDAAC) [https://cdaac-www.cosmic.ucar.edu].

instantiate IVM Object
ivm = pysat.Instrument(platform='cnofs',
 name='ivm', tag='',
 clean_level='clean')
restrict measurements to those near geomagnetic equator
ivm.custom.add(restrictMLAT, 'modify', maxMLAT=25.)
perform seasonal average
ivm.bounds = (startDate, stopDate)
ivmResults = pysat.ssnl.avg.median2D(ivm, [0, 360, 24], 'alon',
 [0, 24, 24], 'mlt', ['ionVelmeridional'])

create COSMIC instrument object
cosmic = pysat.Instrument(platform='cosmic',
 name='gps', tag='ionprf',
 clean_level='clean',
 altitude_bin=3)

apply custom functions to all data that is loaded through cosmic
cosmic.custom.add(addApexLong, 'add')

select locations near the magnetic equator
cosmic.custom.add(filterMLAT, 'modify', mlatRange=(0., 10.))

take the log of NmF2 and add to the dataframe
cosmic.custom.add(addlogNm, 'add')

calculates the height above hmF2 to reach Ne < NmF2/e
cosmic.custom.add(addTopsideScaleHeight, 'add')

do an average of multiple COSMIC data products
from startDate through stopDate
a mixture of 1D and 2D data is averaged
cosmic.bounds = (startDate, stopDate)
cosmicResults = pysat.ssnl.avg.median2D(cosmic, [0, 360, 24], 'apex_long',
 [0, 24, 24], 'edmaxlct',
 ['profiles', 'edmaxalt',
 'lognm', 'thf2'])

the work is done, plot the results

[image: _images/ssnl_median_ivm_cosmic_1d.png]
The top image is the median ion drift from the IVM, while the remaining plots
are derived from the COSMIC density profiles. COSMIC data does not come with
the location of the profiles in magnetic coordinates, so this information is
added using the nano-kernel.

cosmic.custom.add(addApexLong, 'add')

call runs a routine that adds the needed information. This routine is currently
only using a simple titled dipole model.
Similarly, using custom functions, locations away from the magnetic equator are
filtered out and a couple new quantities are added.

There is a strong correspondence between the distribution of downward drifts
between noon and midnight and a reduction in the height of the peak ionospheric
density around local sunset. There isn’t the same strong correspondence with the
other parameters but ion density profiles are also affected by production and
loss processes, not measured by IVM.

The median averaging routine also produced a series a median altitude profiles
as a function of longitude and local time. A selection are shown below.

[image: _images/ssnl_median_ivm_cosmic_2d.png]
There is a gradient in the altitude distribution over longitude near sunset.
Between 0-15 longitude an upward slope is seen in bottom-side density levels
with local time though higher altitudes have a flatter gradient. This is
consistent with the upward ion drifts reported by IVM. Between 45-60 the
bottom-side ionosphere is flat with local time, while densities at higher
altitudes drop steadily. Ion drifts in this sector become downward at night.
Downward drifts lower plasma into exponentially higher neutral densities,
rapidly neutralizing plasma and producing an effective flat bottom. Thus, the
COSMIC profile in this sector is also consistent with the IVM drifts.

Between 15-30 degrees longitude, ion drifts are upward, but less than the
0-15 sector. Similarly, the density profile in the same sector has a weaker
upward gradient with local time than the 0-15 sector. Between 30-45 longitude,
drifts are mixed, then transition into weaker downward drifts than between
45-60 longitude. The corresponding profiles have a flatter bottom-side gradient
than sectors with upward drift (0-30), and a flatter top-side gradient than
when drifts are more downward (45-60), consistent with the ion drifts.

Supported Instruments

C/NOFS IVM

Supports the Ion Velocity Meter (IVM) onboard the Communication
and Navigation Outage Forecasting System (C/NOFS) satellite, part
of the Coupled Ion Netural Dynamics Investigation (CINDI). Downloads
data from the NASA Coordinated Data Analysis Web (CDAWeb) in CDF
format.

The IVM is composed of the Retarding Potential Analyzer (RPA) and
Drift Meter (DM). The RPA measures the energy of plasma along the
direction of satellite motion. By fitting these measurements
to a theoretical description of plasma the number density, plasma
composition, plasma temperature, and plasma motion may be determined.
The DM directly measures the arrival angle of plasma. Using the reported
motion of the satellite the angle is converted into ion motion along
two orthogonal directions, perpendicular to the satellite track.

References

A brief discussion of the C/NOFS mission and instruments can be found at
de La Beaujardière, O., et al. (2004), C/NOFS: A mission to forecast
scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591,
doi:10.1016/j.jastp.2004.07.030.

Discussion of cleaning parameters for ion drifts can be found in:
Burrell, Angeline G., Equatorial topside magnetic field-aligned ion drifts
at solar minimum, The University of Texas at Dallas, ProQuest
Dissertations Publishing, 2012. 3507604.

Discussion of cleaning parameters for ion temperature can be found in:
Hairston, M. R., W. R. Coley, and R. A. Heelis (2010), Mapping the
duskside topside ionosphere with CINDI and DMSP, J. Geophys. Res.,115,
A08324, doi:10.1029/2009JA015051.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘cnofs’

	name

	‘ivm’

	tag

	None supported

	sat_id

	None supported

Warning

	The sampling rate of the instrument changes on July 29th, 2010.
The rate is attached to the instrument object as .sample_rate.

	The cleaning parameters for the instrument are still under development.

C/NOFS PLP

Supports the Planar Langmuir Probe (PLP) onboard the Communication
and Navigation Outage Forecasting System (C/NOFS) satellite. Downloads
data from the NASA Coordinated Data Analysis Web (CDAWeb).

Description from CDAWeb:

The Planar Langmuir Probe on C/NOFS is a suite of 2 current measuring sensors
mounted on the ram facing surface of the spacecraft. The primary sensor is an
Ion Trap (conceptually similar to RPAs flown on many other spacecraft) capable
of measuring ion densities as low as 1 cm-3 with a 12 bit log electrometer.
The secondary senor is a swept bias planar Langmuir probe (Surface Probe)
capable of measuring Ne, Te, and spacecraft potential.

The ion number density is the one second average of the ion density sampled at
either 32, 256, 512, or 1024 Hz (depending on the mode).

The ion density standard deviation is the standard deviation of the samples
used to produce the one second average number density.

DeltaN/N is the detrened ion number density 1 second standard deviation divided
by the mean 1 sec density.

The electron density, electron temperature, and spacecraft potential are all
derived from a least squares fit to the current-bias curve from the Surface
Probe.

The data is PRELIMINARY, and as such, is intended for BROWSE PURPOSES ONLY.

References

A brief discussion of the C/NOFS mission and instruments can be found at
de La Beaujardière, O., et al. (2004), C/NOFS: A mission to forecast
scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591,
doi:10.1016/j.jastp.2004.07.030.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘cnofs’

	name

	‘plp’

	tag

	None supported

	sat_id

	None supported

Warning

	The data are PRELIMINARY, and as such, are intended for BROWSE PURPOSES ONLY.

	Currently no cleaning routine.

	Module not written by PLP team.

C/NOFS VEFI

Supports the Vector Electric Field Instrument (VEFI)
onboard the Communication and Navigation Outage Forecasting
System (C/NOFS) satellite. Downloads data from the
NASA Coordinated Data Analysis Web (CDAWeb).

Description from CDAWeb:

The DC vector magnetometer on the CNOFS spacecraft is a three axis, fluxgate
sensor with active thermal control situated on a 0.6m boom. This magnetometer
measures the Earth’s magnetic field using 16 bit A/D converters at 1 sample per
sec with a range of .. 45,000 nT. Its primary objective on the CNOFS
spacecraft is to enable an accurate V x B measurement along the spacecraft
trajectory. In order to provide an in-flight calibration of the magnetic field
data, we compare the most recent POMME model (the POtsdam Magnetic Model of the
Earth, http://geomag.org/models/pomme5.html) with the actual magnetometer
measurements to help determine a set of calibration parameters for the gains,
offsets, and non-orthogonality matrix of the sensor axes. The calibrated
magnetic field measurements are provided in the data file here. The VEFI
magnetic field data file currently contains the following variables:
B_north Magnetic field in the north direction
B_up Magnetic field in the up direction
B_west Magnetic field in the west direction

The data is PRELIMINARY, and as such, is intended for BROWSE PURPOSES ONLY.

References

A brief discussion of the C/NOFS mission and instruments can be found at
de La Beaujardière, O., et al. (2004), C/NOFS: A mission to forecast
scintillations, J. Atmos. Sol. Terr. Phys., 66, 1573–1591,
doi:10.1016/j.jastp.2004.07.030.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘cnofs’

	name

	‘vefi’

	tag

	Select measurement type, one of {‘dc_b’}

	sat_id

	None supported

Note

	tag = ‘dc_b’: 1 second DC magnetometer data

Warning

	The data is PRELIMINARY, and as such, is intended for BROWSE PURPOSES ONLY.

	Limited cleaning routine.

	Module not written by VEFI team.

CHAMP-STAR

Supports the Spatial Triaxial Accelerometer for Research (STAR) instrument
onboard the Challenging Minipayload (CHAMP) satellite. Accesses local data in
ASCII format.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatIncubator (https://github.com/pysat/pysatIncubator)

Properties

	platform

	‘champ’

	name

	‘star’

	tag

	None supported

	sat_id

	None supported

Warning

	The cleaning parameters for the instrument are still under development.

Authors

Angeline G. Burrell, Feb 22, 2016, University of Leicester

COSMIC GPS

Loads data from the COSMIC satellite.

The Constellation Observing System for Meteorology, Ionosphere, and Climate
(COSMIC) is comprised of six satellites in LEO with GPS receivers. The
occultation of GPS signals by the atmosphere provides a measurement of
atmospheric parameters. Data downloaded from the COSMIC Data Analaysis
and Archival Center.

Default behavior is to search for the 2013 re-processed data first, then the
post-processed data as recommended on
https://cdaac-www.cosmic.ucar.edu/cdaac/products.html

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatCDAAC (https://github.com/pysat/pysatCDAAC)

Properties

	platform

	‘cosmic’

	name

	‘gps’ for Radio Occultation profiles

	tag

	Select profile type, or scintillation, one of:
{‘ionprf’, ‘sonprf’, ‘wetprf’, ‘atmprf’, ‘scnlv1’}

	sat_id

	None supported

	altitude_bin

	Number of kilometers to bin altitude profiles by when loading.
Currently only supported for tag=’ionprf’.

Note

	‘ionprf: ‘ionPrf’ ionosphere profiles

	‘sonprf’: ‘sonPrf’ files

	‘wetprf’: ‘wetPrf’ files

	‘atmprf’: ‘atmPrf’ files

	‘scnlv1’: ‘scnLv1’ files

Warning

	Routine was not produced by COSMIC team

	More recent versions of netCDF4 and numpy limit the casting of some variable
types into others. This issue could prevent data loading for some variables
such as ‘MSL_Altitude’ in the ‘sonprf’ and ‘wetprf’ files. The default
UserWarning when this occurs is

‘UserWarning: WARNING: missing_value not used since it cannot be safely
cast to variable data type’

DE2 LANG

Supports the Langmuir Probe (LANG) instrument on Dynamics Explorer 2 (DE2).

From CDAWeb:

The Langmuir Probe Instrument (LANG) was a cylindrical electrostatic probe that
obtained measurements of electron temperature, Te, and electron or ion
concentration, Ne or Ni, respectively, and spacecraft potential. Data from
this investigation were used to provide temperature and density measurements
along magnetic field lines related to thermal energy and particle flows within
the magnetosphere-ionosphere system, to provide thermal plasma conditions for
wave-particle interactions, and to measure large-scale and fine-structure
ionospheric effects of energy deposition in the ionosphere. The Langmuir Probe
instrument was identical to that used on the AE satellites and the Pioneer
Venus Orbiter. Two independent sensors were connected to individual adaptive
sweep voltage circuits which continuously tracked the changing electron
temperature and spacecraft potential, while autoranging electrometers adjusted
their gain in response to the changing plasma density. The control signals used
to achieve this automatic tracking provided a continuous monitor of the
ionospheric parameters without telemetering each volt-ampere (V-I) curve.
Furthermore, internal data storage circuits permitted high resolution, high
data rate sampling of selected V-I curves for transmission to ground to verify
or correct the inflight processed data. Time resolution was 0.5 seconds.

References

J. P. Krehbiel, L. H. Brace, R. F. Theis, W. H. Pinkus, and R. B. Kaplan,
The Dynamics Explorer 2 Langmuir Probe (LANG), Space Sci. Instrum., v. 5, n. 4,
p. 493, 1981.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘de2’

	name

	‘lang’

	sat_id

	None Supported

	tag

	None Supported

Authors

	Klenzing

DE2 NACS

Supports the Neutral Atmosphere Composition Spectrometer (NACS) instrument
on Dynamics Explorer 2 (DE2).

From CDAWeb:

The Neutral Atmosphere Composition Spectrometer (NACS) was designed to obtain
in situ measurements of the neutral atmospheric composition and to study the
variations of the neutral atmosphere in response to energy coupled into it from
the magnetosphere. Because temperature enhancements, large-scale circulation
cells, and wave propagation are produced by energy input (each of which
posseses a specific signature in composition variation), the measurements
permitted the study of the partition, flow, and deposition of energy from the
magnetosphere. Specifically, the investigation objective was to characterize
the composition of the neutral atmosphere with particular emphasis on
variability in constituent densities driven by interactions in the atmosphere,
ionosphere, and magnetosphere system. The quadrupole mass spectrometer used was
nearly identical to those flown on the AE-C, -D, and -E missions. The electron-
impact ion source was used in a closed mode. Atmospheric particles entered an
antechamber through a knife-edged orifice, where they were thermalized to the
instrument temperature. The ions with the selected charge-to-mass ratios had
stable trajectories through the hyperbolic electric field, exited the analyzer,
and entered the detection system. An off-axis beryllium-copper dynode
multiplier operating at a gain of 2.E6 provided an output pulse of electrons
for each ion arrival. The detector output had a pulse rate proportional to the
neutral density in the ion source of the selected mass. The instrument also
included two baffles that scanned across the input orifice for optional
measurement of the zonal and vertical components of the neutral wind. The mass
select system provided for 256 mass values between 0 and 51 atomic mass units
(u) or each 0.2 u. It was possible to call any one of these mass numbers into
each of eight 0.016-s intervals. This sequence was repeated each 0.128 s.

This data set includes daily files of the PI-provided DE-2 NACS 1-second data
and corresponding orbit parameters. The data set was generated at NSSDC from
the original PI-provided data and software (SPTH-00010) and from the
orbit/attitude database and software that is part of the DE-2 UA data set
(SPIO-00174). The original NACS data were provided by the PI team in a highly
compressed VAX/VMS binary format on magnetic tapes. The data set covers the
whole DE-2 mission time period. Each data point is an average over the normally
8 measurements per second. Densities and relative errors are provided for
atomic oxygen (O), molecular nitrogen (N2), helium (He), atomic nitrogen (N),
and argon (Ar). The data quality is generally quite good below 500 km, but
deteriorates towards higher altitudes as oxygen and molecular nitrogen approach
their background values (which could only be determined from infrequent
spinning orbits) and the count rate for Ar becomes very low. The difference
between minimum (background) and maximum count rate for atomic nitrogen
(estimated from mass 30) was so small that results are generally poor. Data
were lost between 12 March 1982 and 31 March 1982 when the counter overflowed.

References

G. R. Carrignan, B. P. Block, J. C. Maurer, A. E. Hedin, C. A. Reber,
N. W. Spencer
The neutral mass spectrometer on Dynamics Explorer B
Space Sci. Instrum., v. 5, n. 4, p. 429, 1981.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘de2’

	name

	‘nacs’

	sat_id

	None Supported

	tag

	None Supported

Authors

	Klenzing

DE2 RPA

Supports the Retarding Potential Analyzer (RPA) instrument on
Dynamics Explorer 2 (DE2).

From CDAWeb:

The Retarding Potential Analyzer (RPA) measured the bulk ion velocity in the
direction of the spacecraft motion, the constituent ion concentrations, and the
ion temperature along the satellite path. These parameters were derived from a
least squares fit to the ion number flux vs energy curve obtained by sweeping
or stepping the voltage applied to the internal retarding grids of the RPA. In
addition, a separate wide aperture sensor, a duct sensor, was flown to measure
the spectral characteristics of iregularities in the total ion concentration.
The measured parameters obtained from this investigation were important to the
understanding of mechanisms that influence the plasma; i.e., to understand the
coupling between the solar wind and the earth’s atmosphere. The measurements
were made with a multigridded planar retarding potential analyzer very similar
in concept and geometry to the instruments carried on the AE satellites. The
retarding potential was variable in the range from approximately +32 to 0 V.
The details of this voltage trace, and whether it was continuous or stepped,
depended on the operating mode of the instrument. Specific parameters deduced
from these measurements were ion temperature; vehicle potential; ram component
of the ion drift velocity; the ion and electron concentration irregularity
spectrum; and the concentration of H+, He+, O+, and Fe+, and of molecular ions
near perigee.

It includes the DUCT portion of the high resolutiondata from the Dynamics
Explorer 2 (DE-2) Retarding Potential Analyzer (RPA) for the whole DE-2 mission
time period in ASCII format. This version was generated at NSSDC from the
PI-provided binary data (SPIO-00232). The DUCT files include RPA measurements
ofthe total ion concentration every 64 times per second. Due to a failure in
the instrument memory system RPA data are not available from 81317 06:26:40 UT
to 82057 13:16:00 UT. This data set is based on the revised version of the RPA
files that was submitted by the PI team in June of 1995. The revised RPA data
include a correction to the spacecraft potential.

References

W. B. Hanson, R. A. Heelis, R. A. Power, C. R. Lippincott, D. R. Zuccaro,
B. J. Holt, L. H. Harmon, and S. Sanatani, “The retarding potential analyzer
for dynamics explorer-B,” Space Sci. Instrum. 5, 503–510 (1981).

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘de2’

	name

	‘rpa’

	sat_id

	‘’

	tag

	None Supported

Authors

	Klenzing

DE2 WATS

Supports the Wind and Temperature Spectrometer (WATS) instrument on
Dynamics Explorer 2 (DE2).

From CDAWeb:

The Wind and Temperature Spectrometer (WATS) measured the in situ neutral
winds, the neutral particle temperatures, and the concentrations of selected
gases. The objective of this investigation was to study the interrelationships
among the winds, temperatures, plasma drift, electric fields, and other
properties of the thermosphere that were measured by this and other instruments
on the spacecraft. Knowledge of how these properties are interrelated
contributed to an understanding of the consequences of the acceleration of
neutral particles by the ions in the ionosphere, the acceleration of ions by
neutrals creating electric fields, and the related energy transfer between the
ionosphere and the magnetosphere. Three components of the wind, one normal to
the satellite velocity vector in the horizontal plane, one vertical, and one in
the satellite direction were measured. A retarding potential quadrupole mass
spectrometer, coupled to the atmosphere through a precisely orificed
antechamber, was used. It was operated in either of two modes: one employed the
retarding capability and the other used the ion source as a conventional
nonretarding source. Two scanning baffles were used in front of the mass
spectrometer: one moved vertically and the other moved horizontally. The
magnitudes of the horizontal and vertical components of the wind normal to the
spacecraft velocity vector were computed from measurements of the angular
relationship between the neutral particle stream and the sensor. The component
of the total stream velocity in the satellite direction was measured directly
by the spectrometer system through determination of the required retarding
potential. At altitudes too high for neutral species measurements, the planned
operation required the instrument to measure the thermal ion species only. A
series of four sequentially occurring slots –each a 2-s long measurement
interval– was adapted for the basic measurement format of the instrument.
Different functions were commanded into these slots in any combination, one per
measurement interval. Thus the time resolution can be 2, 4, 6, or 8 seconds.
Further details are found in This data set consists of the high-resolution data
of the Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) experiment.
The files contain the neutral density, temperature and horizontal (zonal) wind
velocity, and orbital parameters in ASCII format. The time resolution is
typically 2 seconds. Data are given as daily files (typically a few 100 Kbytes
each). PI-provided software (WATSCOR) was used to correct the binary data set.
NSSDC-developed software was used to add the orbit parameters, to convert the
binary into ASCII format and to combine the (PI-provided) orbital files into
daily files. For more on DE-2, WATS, and the binary data, see the
WATS_VOLDESC_SFDU_DE.DOC and WATS_FORMAT_SFDU_DE.DOC files. More information
about the processing done at NSSDC is given in WATS_NSSDC_PRO_DE.DOC.

References

N. W. Spencer, L. E. Wharton, H. B. Niemann, A. E. Hedin, G. R. Carrignan,
J. C. Maurer
The Dynamics Explorer Wind and Temperature Spectrometer
Space Sci. Instrum., v. 5, n. 4, p. 417, 1981.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘de2’

	name

	‘wats’

	sat_id

	None Supported

	tag

	None Supported

Authors

	Klenzing

Demeter IAP

Supports the Plasma Analyzer Instrument (Instrument Analyseur de Plasma, or
IAP) onboard the Detection of Electro-Magnetic Emissions Transmitted from
Earthquake Regions (DEMETER) Microsatellite.

The IAP consists of a Velocity Analyzer (ADV) and Retarding potential analyzer
(APR) to provide plasma velocities, ion density and temperature, and
satellite potential. The computation of the ion plasma parameters works well
when there are at least two ions being considered. Also, the ADV requires
currents of at least 1 nA to produce believable measurements. The IAP was run
in both survey and burst mode.

Downloads data from the Plasma physics data center (Centre de donees de la
physique des plasmas, CDPP), the French national data center for natural
plasmas of the solar system. This data product requires registration and user
initiated downloading after ordering a data product.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatIncubator (https://github.com/pysat/pysatIncubator)

Properties

	platform

	‘demeter’

	name

	‘iap’

	tag

	‘survey’ or ‘burst’

	sat_id

	None supported

Examples

import pysat
demeter = pysat.Instrument('demeter', 'iap', 'survey', clean_level='none')
demeter.load(2009, 363)

Custom Functions

	add_drift_geo_coord

	Calcuate the ion velocity in geographic coordinates

	add_drift_lgm_coord

	Calcuate the ion velocity in local geomagneic coordinates

	add_drift_sat_coord

	Calculate the ion velocity in satellite x, y, z coordinates

	
pysat.instruments.demeter_iap.add_drift_sat_coord(inst)

	Calculate the ion velocity in satellite x,y,z coordinates

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator

	Parameters

	inst (pysat.Instrument) – DEMETER IAP instrument class object

	Returns

	

	Return type

	Adds data values iv_Ox, iv_Oy

	
pysat.instruments.demeter_iap.add_drift_lgm_coord(inst)

	Calcuate the ion velocity in local geomagneic coordinates

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator

	Parameters

	inst (pysat.Instrument) – DEMETER IAP instrument class object

	Returns

	
	Adds data values iv_par (parallel to B vector at satellite),

	iv_pos (perpendictular to B, in the plane of the satellite),

	iv_perp (completes the coordinate system). If iv_Ox and iv_Oy

	do not exist yet, adds them as well

	
pysat.instruments.demeter_iap.add_drift_geo_coord(inst)

	Calcuate the ion velocity in geographic coordinates

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator

	Parameters

	inst (pysat.Instrument) – DEMETER IAP instrument class object

	Returns

	
	Adds data values iv_geo_x (towards the intersection of equator and

	Grennwich meridian), iv_geo_y (completes coordinate system),

	iv_geo_z (follows Earth’s rotational axis, positive Northward).

	If iv_Ox,y do not exist yet, adds them as well

DMSP IVM

Supports the Ion Velocity Meter (IVM)
onboard the Defense Meteorological Satellite Program (DMSP).

The IVM is comprised of the Retarding Potential Analyzer (RPA) and
Drift Meter (DM). The RPA measures the energy of plasma along the
direction of satellite motion. By fitting these measurements
to a theoretical description of plasma the number density, plasma
composition, plasma temperature, and plasma motion may be determined.
The DM directly measures the arrival angle of plasma. Using the reported
motion of the satellite the angle is converted into ion motion along
two orthogonal directions, perpendicular to the satellite track.

Downloads data from the National Science Foundation Madrigal Database.
The routine is configured to utilize data files with instrument
performance flags generated at the Center for Space Sciences at the
University of Texas at Dallas.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatMadrigal (https://github.com/pysat/pysatMadrigal)

Properties

	platform

	‘dmsp’

	name

	‘ivm’

	tag

	‘utd’, None

	sat_id

	[‘f11’, ‘f12’, ‘f13’, ‘f14’, ‘f15’, ‘f16’, ‘f17’, ‘f18’]

Examples

import pysat
dmsp = pysat.Instrument('dmsp', 'ivm', 'utd', 'f15', clean_level='clean')
dmsp.download(pysat.datetime(2017, 12, 30), pysat.datetime(2017, 12, 31),
 user='Firstname+Lastname', password='email@address.com')
dmsp.load(2017, 363)

Note

Please provide name and email when downloading data with this routine.

Code development supported by NSF grant 1259508

Custom Functions

	add_drift_unit_vectors

	Add unit vectors for the satellite velocity

	add_drifts_polar_cap_x_y

	Add polar cap drifts in cartesian coordinates

	smooth_ram_drifts

	Smooth the ram drifts using a rolling mean

	update_DMSP_ephemeris

	Updates DMSP instrument data with DMSP ephemeris

	
pysat.instruments.dmsp_ivm.smooth_ram_drifts(inst, rpa_flag_key=None, rpa_vel_key='ion_v_sat_for')

	Smooth the ram drifts using a rolling mean

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatMadrigal.instruments.methods.dmsp.smooth_ram_drifts

	Parameters

	
	rpa_flag_key (string or NoneType) – RPA flag key, if None will not select any data. The UTD RPA flag key
is ‘rpa_flag_ut’ (default=None)

	rpa_vel_key (string) – RPA velocity data key (default=’ion_v_sat_for’)

	Returns

	

	Return type

	RPA data in instrument object

	
pysat.instruments.dmsp_ivm.update_DMSP_ephemeris(inst, ephem=None)

	Updates DMSP instrument data with DMSP ephemeris

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatMadrigal.instruments.methods.dmsp.update_DMSP_ephemeris

	Parameters

	ephem (pysat.Instrument or NoneType) – dmsp_ivm_ephem instrument object

	Returns

	

	Return type

	Updates ‘mlt’ and ‘mlat’

	
pysat.instruments.dmsp_ivm.add_drift_unit_vectors(inst)

	Add unit vectors for the satellite velocity

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatMadrigal.instruments.methods.dmsp.add_drift_unit_vectors

	Returns

	
	Adds unit vectors in cartesian and polar coordinates for RAM and

	cross-track directions –

	‘unit_ram_x’, ‘unit_ram_y’, ‘unit_ram_r’, ‘unit_ram_theta’

	’unit_cross_x’, ‘unit_cross_y’, ‘unit_cross_r’, ‘unit_cross_theta’

Notes

Assumes that the RAM vector is pointed perfectly forward

	
pysat.instruments.dmsp_ivm.add_drifts_polar_cap_x_y(inst, rpa_flag_key=None, rpa_vel_key='ion_v_sat_for', cross_vel_key='ion_v_sat_left')

	Add polar cap drifts in cartesian coordinates

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatMadrigal.instruments.methods.dmsp.add_drifts_polar_cap_x_y

	Parameters

	
	rpa_flag_key (string or NoneType) – RPA flag key, if None will not select any data. The UTD RPA flag key
is ‘rpa_flag_ut’ (default=None)

	rpa_vel_key (string) – RPA velocity data key (default=’ion_v_sat_for’)

	cross_vel_key (string) – Cross-track velocity data key (default=’ion_v_sat_left’)

	Returns

	
	Adds ‘ion_vel_pc_x’, ‘ion_vel_pc_y’, and ‘partial’. The last data key

	indicates whether RPA data was available (False) or not (True).

Notes

Polar cap drifts assume there is no vertical component to the X-Y
velocities

ICON EUV

Supports the Extreme Ultraviolet (EUV) imager onboard the Ionospheric
CONnection Explorer (ICON) satellite. Accesses local data in
netCDF format.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA). Note that
the ICON files are retrieved from different servers here and in pysatNASA,
resulting in a difference in local file names. Please see the migration guide
there for more details.

Properties

	platform

	‘icon’

	name

	‘euv’

	tag

	None supported

Warning

	The cleaning parameters for the instrument are still under development.

	Only supports level-2 data.

Examples

import pysat
euv = pysat.Instrument(platform='icon', name='euv')
euv.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
euv.load(2020, 1)

By default, pysat removes the ICON level tags from variable names, ie,
ICON_L27_Ion_Density becomes Ion_Density. To retain the original names, use

euv = pysat.Instrument(platform='icon', name='euv',
 keep_original_names=True)

Authors

Jeff Klenzing, Mar 17, 2018, Goddard Space Flight Center
Russell Stoneback, Mar 23, 2018, University of Texas at Dallas

ICON FUV

Supports the Far Ultraviolet (FUV) imager onboard the Ionospheric
CONnection Explorer (ICON) satellite. Accesses local data in
netCDF format.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA). Note that
the ICON files are retrieved from different servers here and in pysatNASA,
resulting in a difference in local file names. Please see the migration guide
there for more details.

Properties

	platform

	‘icon’

	name

	‘fuv’

	tag

	None supported

Warning

	The cleaning parameters for the instrument are still under development.

	Only supports level-2 data.

Example

import pysat
fuv = pysat.Instrument(platform='icon', name='fuv', tag='day')
fuv.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
fuv.load(2020, 1)

By default, pysat removes the ICON level tags from variable names, ie,
ICON_L27_Ion_Density becomes Ion_Density. To retain the original names, use

fuv = pysat.Instrument(platform='icon', name='fuv', tag=day',
 keep_original_names=True)

Authors

Originated from EUV support.
Jeff Klenzing, Mar 17, 2018, Goddard Space Flight Center
Russell Stoneback, Mar 23, 2018, University of Texas at Dallas
Conversion to FUV, Oct 8th, 2028, University of Texas at Dallas

ICON IVM

Supports the Ion Velocity Meter (IVM)
onboard the Ionospheric Connections (ICON) Explorer.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA). Note that
the ICON files are retrieved from different servers here and in pysatNASA,
resulting in a difference in local file names. Please see the migration guide
there for more details.

Properties

	platform

	‘icon’

	name

	‘ivm’

	tag

	None supported

	sat_id

	‘a’ or ‘b’

Warning

	No download routine as ICON has not yet been launched

	Data not yet publicly available

Example

import pysat
ivm = pysat.Instrument(platform='icon', name='ivm', sat_id='a')
ivm.download(dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 31))
ivm.load(2020, 1)

By default, pysat removes the ICON level tags from variable names, ie,
ICON_L27_Ion_Density becomes Ion_Density. To retain the original names, use

ivm = pysat.Instrument(platform='icon', name='ivm', sat_id='a',
 keep_original_names=True)

Author

	
	Stoneback

ICON MIGHTI

Supports the Michelson Interferometer for Global High-resolution
Thermospheric Imaging (MIGHTI) instrument onboard the Ionospheric
CONnection Explorer (ICON) satellite. Accesses local data in
netCDF format.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA). Note that
the ICON files are retrieved from different servers here and in pysatNASA,
resulting in a difference in local file names. Please see the migration guide
there for more details.

Properties

	platform

	‘icon’

	name

	‘mighti’

	tag

	Supports ‘los_wind_green’, ‘los_wind_red’, ‘vector_wind_green’,
‘vector_wind_red’, ‘temperature’. Note that not every data product
available for every sat_id

	sat_id

	‘’, ‘a’, or ‘b’

Warning

	The cleaning parameters for the instrument are still under development.

	Only supports level-2 data.

Example

import pysat
mighti = pysat.Instrument('icon', 'mighti', 'vector_wind_green',
 clean_level='clean')
mighti.download(dt.datetime(2020, 1, 30), dt.datetime(2020, 1, 31))
mighti.load(2020, 2)

By default, pysat removes the ICON level tags from variable names, ie,
ICON_L27_Ion_Density becomes Ion_Density. To retain the original names, use

mighti = pysat.Instrument(platform='icon', name='mighti',
 tag='vector_wind_green', clean_level='clean',
 keep_original_names=True)

Authors

Originated from EUV support.
Jeff Klenzing, Mar 17, 2018, Goddard Space Flight Center
Russell Stoneback, Mar 23, 2018, University of Texas at Dallas
Conversion to MIGHTI, Oct 8th, 2028, University of Texas at Dallas

ISS-FPMU

Supports the Floating Potential Measurement Unit
(FPMU) instrument onboard the International Space
Station (ISS). Downloads data from the NASA
Coordinated Data Analysis Web (CDAWeb).

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘iss’

	name

	‘fpmu’

	tag

	None Supported

	sat_id

	None supported

Warning

	Currently clean only replaces fill values with Nans.

	Module not written by FPMU team.

JRO ISR

Supports the Incoherent Scatter Radar at the Jicamarca Radio Observatory

The Incoherent Scatter Radar (ISR) at the Jicamarca Radio Observatory (JRO)
observes ion drifts, line-of-sight neutral winds, electron density and
temperature, ion temperature, and ion composition through three overarching
experiments.

Downloads data from the JRO Madrigal Database.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatMadrigal (https://github.com/pysat/pysatMadrigal)

Properties

	platform

	‘jro’

	name

	‘isr’

	tag

	‘drifts’, ‘drifts_ave’, ‘oblique_stan’, ‘oblique_rand’, ‘oblique_long’

Examples

import pysat
jro = pysat.Instrument('jro', 'isr', 'drifts', clean_level='clean')
jro.download(pysat.datetime(2017, 12, 30), pysat.datetime(2017, 12, 31),
 user='Firstname+Lastname', password='email@address.com')
jro.load(2017, 363)

Note

Please provide name and email when downloading data with this routine.

OMNI_HRO

Supports OMNI Combined, Definitive, IMF and Plasma Data, and Energetic
Proton Fluxes, Time-Shifted to the Nose of the Earth’s Bow Shock, plus Solar
and Magnetic Indices. Downloads data from the NASA Coordinated Data Analysis
Web (CDAWeb). Supports both 5 and 1 minute files.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘omni’

	name

	‘hro’

	tag

	Select time between samples, one of {‘1min’, ‘5min’}

	sat_id

	None supported

Note

Files are stored by the first day of each month. When downloading use
omni.download(start, stop, freq=’MS’) to only download days that could possibly
have data. ‘MS’ gives a monthly start frequency.

This material is based upon work supported by the
National Science Foundation under Grant Number 1259508.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

Warning

	Currently no cleaning routine. Though the CDAWEB description indicates that
these level-2 products are expected to be ok.

	Module not written by OMNI team.

Custom Functions

	time_shift_to_magnetic_poles

	Shift time from bowshock to intersection with one of the magnetic poles

	calculate_clock_angle

	Calculate the clock angle and IMF mag in the YZ plane

	calculate_imf_steadiness

	Calculate the IMF steadiness using clock angle and magnitude in the YZ plane

	calculate_dayside_reconnection

	Calculate the dayside reconnection rate

	
pysat.instruments.omni_hro.calculate_clock_angle(inst)

	Calculate IMF clock angle and magnitude of IMF in GSM Y-Z plane

Deprecated since version 2.3.0: This function has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

	Parameters

	inst (pysat.Instrument) – Instrument with OMNI HRO data

	
pysat.instruments.omni_hro.calculate_imf_steadiness(inst, steady_window=15, min_window_frac=0.75, max_clock_angle_std=28.64788975654116, max_bmag_cv=0.5)

	Calculate IMF steadiness using clock angle standard deviation and
the coefficient of variation of the IMF magnitude in the GSM Y-Z plane

Deprecated since version 2.3.0: This function has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

	Parameters

	
	inst (pysat.Instrument) – Instrument with OMNI HRO data

	steady_window (int) – Window for calculating running statistical moments in min (default=15)

	min_window_frac (float) – Minimum fraction of points in a window for steadiness to be calculated
(default=0.75)

	max_clock_angle_std (float) – Maximum standard deviation of the clock angle in degrees (default=22.5)

	max_bmag_cv (float) – Maximum coefficient of variation of the IMF magnitude in the GSM
Y-Z plane (default=0.5)

	
pysat.instruments.omni_hro.time_shift_to_magnetic_poles(inst)

	OMNI data is time-shifted to bow shock. Time shifted again
to intersections with magnetic pole.

Deprecated since version 2.3.0: This function has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

	Parameters

	inst (Instrument class object) – Instrument with OMNI HRO data

Notes

Time shift calculated using distance to bow shock nose (BSN)
and velocity of solar wind along x-direction.

Warning

Use at own risk.

ROCSAT-1 IVM

Supports the Ion Velocity Meter (IVM)
onboard the Republic of China Satellite (ROCSAT-1). Downloads data from the
NASA Coordinated Data Analysis Web (CDAWeb).

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘rocsat1’

	name

	‘ivm’

	tag

	None

	sat_id

	None supported

Note

	no tag or sat_id required

Warning

	Currently no cleaning routine.

SPORT IVM

Ion Velocity Meter (IVM) support for the NASA/INPE SPORT CubeSat.

This mission is still in development. This routine is here to help
with the development of code associated with SPORT and the IVM.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

SuperDARN

SuperDARN data support for grdex files(Alpha Level!)

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatIncubator (https://github.com/pysat/pysatIncubator)

Properties

	platform

	‘superdarn’

	name

	‘grdex’

	tag

	‘north’ or ‘south’ for Northern/Southern hemisphere data

Note

Requires davitpy and davitpy to load SuperDARN files.
Uses environment variables set by davitpy to download files
from Virginia Tech SuperDARN data servers. davitpy routines
are used to load SuperDARN data.

This material is based upon work supported by the
National Science Foundation under Grant Number 1259508.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

Warning

Cleaning only removes entries that have 0 vectors, grdex files
are constituted from what it is thought to be good data.

SuperMAG

Supports SuperMAG ground magnetometer measurements and SML/SMU indices.
Downloading is supported; please follow their rules of the road:
http://supermag.jhuapl.edu/info/?page=rulesoftheroad

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatIncubator (https://github.com/pysat/pysatIncubator)

Properties

	platform

	‘supermag’

	name

	‘magnetometer’

	tag

	Select {‘indices’, ‘’, ‘all’, ‘stations’}

Note

Files must be downloaded from the website, and is freely available after
registration.

This material is based upon work supported by the
National Science Foundation under Grant Number 1259508.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

Warning

	Currently no cleaning routine, though the SuperMAG description indicates
that these products are expected to be good. More information about the
processing is available

	Module not written by the SuperMAG team.

SW Dst

Supports Dst values. Downloads data from NGDC.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatSpaceWeather
(https://github.com/pysat/pysatSpaceWeather)

Properties

	platform

	‘sw’

	name

	‘dst’

	tag

	None supported

Note

Will only work until 2057.

Download method should be invoked on a yearly frequency,
dst.download(date1, date2, freq=’AS’)

This material is based upon work supported by the
National Science Foundation under Grant Number 1259508.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

SW F107

Supports F10.7 index values. Downloads data from LASP and the SWPC.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatSpaceWeather
(https://github.com/pysat/pysatSpaceWeather)

Properties

	platform

	‘sw’

	name

	‘f107’

	tag

	
	‘’ : LASP F10.7 data (downloads by month, loads by day)

	‘all’ : All LASP standard F10.7

	‘prelim’ : Preliminary SWPC daily solar indices

	‘daily’ : Daily SWPC solar indices (contains last 30 days)

	‘forecast’ : Grab forecast data from SWPC (next 3 days)

	‘45day’ : 45-Day Forecast data from the Air Force

Note

The forecast data is stored by generation date, where each file contains the
forecast for the next three days. Forecast data downloads are only supported
for the current day. When loading forecast data, the date specified with the
load command is the date the forecast was generated. The data loaded will span
three days. To always ensure you are loading the most recent data, load
the data with tomorrow’s date.

f107 = pysat.Instrument('sw', 'f107', tag='forecast')
f107.download()
f107.load(date=f107.tomorrow())

The forecast or prelim data should not be used with the data padding option
available from pysat.Instrument objects. The ‘all’ tag shouldn’t be used either,
no other data available to pad with.

Warning

The ‘forecast’ F10.7 data loads three days at a time. The data padding feature
and multi_file_day feature available from the pyast.Instrument object
is not appropriate for ‘forecast’ data.

SW Kp

Supports Kp index values. Downloads data from ftp.gfz-potsdam.de or SWPC.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatSpaceWeather
(https://github.com/pysat/pysatSpaceWeather)

	param platform

	‘sw’

	param name

	‘kp’

	param tag

	
	‘’ : Standard Kp data

	‘forecast’ : Grab forecast data from SWPC (next 3 days)

	‘recent’ : Grab last 30 days of Kp data from SWPC

Note

Standard Kp files are stored by the first day of each month. When downloading
use kp.download(start, stop, freq=’MS’) to only download days that could
possibly have data. ‘MS’ gives a monthly start frequency.

The forecast data is stored by generation date, where each file contains the
forecast for the next three days. Forecast data downloads are only supported
for the current day. When loading forecast data, the date specified with the
load command is the date the forecast was generated. The data loaded will span
three days. To always ensure you are loading the most recent data, load
the data with tomorrow’s date.

kp = pysat.Instrument('sw', 'kp', tag='recent')
kp.download()
kp.load(date=kp.tomorrow())

Recent data is also stored by the generation date from the SWPC. Each file
contains 30 days of Kp measurements. The load date issued to pysat corresponds
to the generation date.

The recent and forecast data should not be used with the data padding option
available from pysat.Instrument objects.

Warning

The ‘forecast’ Kp data loads three days at a time. The data padding feature
and multi_file_day feature available from the pyast.Instrument object
is not appropriate for Kp ‘forecast’ data.

This material is based upon work supported by the
National Science Foundation under Grant Number 1259508.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

Custom Functions

	filter_geoquiet

	Filters pysat.Instrument data for given time after Kp drops below gate.

	
pysat.instruments.sw_kp.filter_geoquiet(sat, maxKp=None, filterTime=None, kpData=None, kp_inst=None)

	Filters pysat.Instrument data for given time after Kp drops below gate.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and has been replaced
with the more adaptable function,
pysatSpaceWeather.instruments.methods.kp_ap.filter_geomag. Be sure to
update to use the new kwargs.

	Parameters

	
	sat (pysat.Instrument) – Instrument to be filtered

	maxKp (float) – Maximum Kp value allowed. Kp values above this trigger
sat.data filtering.

	filterTime (int) – Number of hours to filter data after Kp drops below maxKp

	kpData (pysat.Instrument (optional)) – Kp pysat.Instrument object with data already loaded

	kp_inst (pysat.Instrument (optional)) – Kp pysat.Instrument object ready to load Kp data.Overrides kpData.

Notes

Loads Kp data for the same timeframe covered by sat and sets sat.data to
NaN for times when Kp > maxKp and for filterTime after Kp drops below
maxKp.

This routine is written for standard Kp data, not the forecast or recent
data.

TIMED/SABER

Supports the Sounding of the Atmosphere using Broadband Emission Radiometry
(SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics
Dynamics (TIMED) satellite.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘timed’

	name

	‘saber’

	tag

	None supported

	sat_id

	None supported

Note

SABER “Rules of the Road” for DATA USE
Users of SABER data are asked to respect the following guidelines

	Mission scientific and model results are open to all.

	Guest investigators, and other members of the scientific community or
general public should contact the PI or designated team member early in an
analysis project to discuss the appropriate use of the data.

	Users that wish to publish the results derived from SABER data should
normally offer co-authorship to the PI, Associate PI or designated team
members. Co-authorship may be declined. Appropriate acknowledgement of
institutions, personnel, and funding agencies should be given.

	Users should heed the caveats of SABER team members as to the
interpretation and limitations of the data. SABER team members may insist
that such caveats be published, even if co-authorship is declined. Data
and model version numbers should also be specified.

	Pre-prints of publications and conference abstracts should be widely
distributed to interested parties within the mission and related projects.

Warning

	Note on Temperature Errors: http://saber.gats-inc.com/temp_errors.php

Authors

	Klenzing, 4 March 2019

TIMED/SEE

Supports the SEE instrument on TIMED.

Downloads data from the NASA Coordinated Data
Analysis Web (CDAWeb).

Supports two options for loading that may be
specified at instantiation.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatNASA (https://github.com/pysat/pysatNASA)

Properties

	platform

	‘timed’

	name

	‘see’

	tag

	None

	sat_id

	None supported

	flatten_twod

	If True, then two dimensional data is flattened across
columns. Name mangling is used to group data, first column
is ‘name’, last column is ‘name_end’. In between numbers are
appended ‘name_1’, ‘name_2’, etc. All data for a given 2D array
may be accessed via, data.loc[:, ‘item’:’item_end’]
If False, then 2D data is stored as a series of DataFrames,
indexed by Epoch. data.loc[0, ‘item’]
(default=True)

Note

	no tag required

Warning

	Currently no cleaning routine.

UCAR TIEGCM

Supports loading data from files generated using TIEGCM
(Thermosphere Ionosphere Electrodynamics General Circulation Model) model.
TIEGCM file is a netCDF file with multiple dimensions for some variables.

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatModels (https://github.com/pysat/pysatModels)

Properties

	platform

	‘ucar’

	name

	‘tiegcm’

	tag

	None supported

	sat_id

	None supported

Adding a New Instrument

pysat works by calling modules written for specific instruments
that load and process the data consistent with the pysat standard. The name
of the python file corresponds to the combination ‘platform_name’ provided when
initializing a pysat.Instrument object. The module should be placed in the
pysat instruments directory for native support. A compatible module may also be
supplied directly using

pysat.Instrument(inst_module=python_module_object).

Some data repositories have pysat templates prepared to assist in integrating
a new instrument. See the Supported Data Templates section or the
template instrument module code under pysat/instruments/templates/ for more.
A general template has also been included to make starting any Instrument
module easier.

Naming Conventions

pysat uses a hierarchy of named variables to define each specific data product.
In order, this is

	platform

	name

	sat_id

	tag

The exact usage of these can be tailored to the nature of the mission and data
products. In general, each combination should point to a unique data file.
Not every data product will need all of these variable names. Both sat_id
and tag can be instantiated as an empty string if unused or used to
support a ‘default’ data set if desired. Examples are given below.

platform

In general, this is the name of the mission or observatory. Examples include
ICON, JRO, COSMIC, and SuperDARN. Note that this may be a single satellite or
ground-based observatory, a constellation of satellites, or a collaboration of
ground-based observatories.

name

In general, this is the name of the instrument or high-level data product.
When combined with the platform, this forms a unique file in the instruments
directory. Examples include the EUV instrument on ICON (icon_euv) and the
Incoherent Scatter Radar at JRO (jro_isr).

sat_id

In general, this is a unique identifier for a satellite in a constellation of
identical or similar satellites, or multiple instruments on the same satellite
with different look directions. For example, the DMSP satellites carry similar
instrument suites across multiple spacecraft. These are labeled as f11-f18.

Note that sat_id will be updated to inst_id in pysat v3.0.

tag

In general, the tag points to a specific data product. This could be a
specific processing level (such as L1, L2), or a product file (such as the
different profile products for cosmic_gps data, ‘ionprf’, ‘atmprf’, …).

Naming Requirements in Instrument Module

Each instrument file must include the platform and name as variables at the
top-code-level of the file. Additionally, the tags and sat_ids supported by
the module must be stored as dictionaries.

platform = 'your_platform_name'
name = 'name_of_instrument'
dictionary keyed by tag with a string description of that dataset
tags = {'': 'The standard processing for the data. Loaded by default',
 'fancy': 'A higher-level processing of the data.'}
dictionary keyed by sat_id with a list of supported tags
for each key
sat_ids = {'A': ['', 'fancy'], 'B': ['', 'fancy'], 'C': ['']}

Note that the possible tags that can be invoked are ‘’ and ‘fancy’. The tags
dictionary includes a short description for each of these tags. A blank tag
will be present by default if the user does not specify a tag.

The supported sat_ids should also stored in a dictionary. Each key name here
points to a list of the possible tags that can be associated with that
particular sat_id. Note that not all satellites in the example support
every level of processing. In this case, the ‘fancy’ processing is available
for satellites A and B, but not C.

For a dataset that does not need multiple levels of tags and sat_ids, an empty
string can be used. The code below only supports loading a single data set.

platform = 'your_platform_name'
name = 'name_of_instrument'
tags = {'': ''}
sat_ids = {'': ['']}

The DMSP IVM (dmsp_ivm) instrument module is a practical example of
a pysat instrument that uses all levels of variable names.

Required Routines

Three methods are required within a new instrument module to
support pysat operations, with functionality to cover finding files,
loading data from specified files, and downloading new files. While
the methods below are sufficient to engage with pysat,
additional optional methods are needed for full pysat support.

Note that these methods are not directly invoked by the user, but by pysat
as needed in response to user inputs.

list_files

pysat maintains a list of files to enable data management functionality.
To get this information, pysat expects a module method platform_name.list_files
to return a pandas Series of filenames indexed by time with a method
signature of:

def list_files(tag=None, sat_id=None, data_path=None, format_str=None):
 return pandas.Series(files, index=datetime_index)

sat_id and tag are passed in by pysat to select a specific subset of the
available data. The location on the local filesystem to search for the files
is passed in data_path. The list_files method must return
a pandas Series of filenames indexed by datetime objects.

A user is also able to supply a file template string
suitable for locating files on their system at pysat.Instrument instantiation,
passed via format_str, that must be supported. Sometimes users obtain files
from non-traditional sources and format_str makes it easier for those users
to use an existing instrument module to work with those files.

pysat will by default store data in pysat_data_dir/platform/name/tag,
helpfully provided in data_path, where pysat_data_dir is specified by using
pysat.utils.set_data_dir(pysat_data_dir). Note that an alternative
directory structure may be specified using the pysat.Instrument keyword
directory_format at instantiation. The default is recreated using

dformat = '{platform}/{name}/{tag}'
inst=pysat.Instrument(platform, name, directory_format=dformat)

Note that pysat handles the path information thus instrument module developers
do not need to do anything to support the directory_format keyword.

Pre-Built list_files Methods and Support

Finding local files is generally similar across data sets thus pysat
includes a variety of methods to make supporting this functionality easier.
The simplest way to construct a valid list_files method is to use one of these
included pysat methods.

A complete method is available
in pysat.instruments.methods.general.list_files that may find broad use.

pysat.Files.from_os is a convenience constructor provided for filenames that
include time information in the filename and utilize a constant field width
or a consistent delimiter. The location and format of the time information is
specified using standard python formatting and keywords year, month, day, hour,
minute, second. Additionally, both version and revision keywords
are supported. When present, the from_os constructor will filter down the
file list to the latest version and revision combination.

A complete list_files routine could be as simple as

def list_files(tag=None, sat_id=None, data_path=None, format_str=None):
 if format_str is None:
 # set default string template consistent with files from
 # the data provider that will be supported by the instrument
 # module download method
 # template string below works for CINDI IVM data that looks like
 # 'cindi-2009310-ivm-v02.hdf'
 # format_str supported keywords: year, month, day,
 # hour, minute, second, version, and revision
 format_str = 'cindi-{year:4d}{day:03d}-ivm-v{version:02d}.hdf'
 return pysat.Files.from_os(data_path=data_path, format_str=format_str)

The constructor presumes the template string is for a fixed width format
unless a delimiter string is supplied. This constructor supports conversion
of years with only 2 digits and expands them to 4 using the
two_digit_year_break keyword. Note the support for format_str above.

If the constructor is not appropriate, then lower level methods
within pysat._files may also be used to reduce the workload in adding a new
instrument. Note in pysat 3.0 this module will be renamed pysat.files for
greater visibility.

See pysat.utils.time.create_datetime_index for creating a datetime index for an
array of irregularly sampled times.

pysat will invoke the list_files method the first time a particular instrument
is instantiated. After the first instantiation, by default pysat will not search
for instrument files as some missions can produce a large number of
files which may take time to identify. The list of files associated
with an Instrument may be updated by adding update_files=True at
instantiation.

inst = pysat.Instrument(platform=platform, name=name, update_files=True)

The output provided by the list_files function that has been pulled into pysat
the Instrument object above can be inspected from within Python by
checking inst.files.files.

load

Loading data is a fundamental activity for data science and is
required for all pysat instruments. The work invested by the instrument
module author makes it possible for users to work with the data easily.

The load module method signature should appear as:

def load(fnames, tag=None, sat_id=None):
 return data, meta

	fnames contains a list of filenames with the complete data path that
pysat expects the routine to load data for. For most data sets
the method should return the exact data that is within the file.
However, pysat is also currently optimized for working with
data by day. This can present some issues for data sets that are stored
by month or by year. See instruments.methods.nasa_cdaweb.py for an example
of returning daily data when stored by month.

	Some instruments, notably space weather indices, return more than a day of
data. More robust support for time spans that exceed a day is under
evaluation.

	tag and sat_id specify the data set to be loaded.

	The load routine should return a tuple with (data, pysat metadata object).

	data is a pandas DataFrame, column names are the data labels, rows are
indexed by datetime objects.

	For multi-dimensional data, an xarray can be
used instead. When returning xarray data, a variable at the instrument module
top-level must be set,

pandas_format = False

	The pandas DataFrame or xarray needs to be indexed with datetime objects. For
xarray objects this index needs to be named ‘Epoch’ or ‘time’. In a future
version the supported names for the time index may be reduced. ‘Epoch’
should be used for pandas though wider compatibility is expected.

	pysat.utils.create_datetime_index provides for quick generation of an
appropriate datetime index for irregularly sampled data set with gaps

	A pysat meta object may be obtained from pysat.Meta(). The Meta object
uses a pandas DataFrame indexed by variable name with columns for
metadata parameters associated with that variable, including items like
‘units’ and ‘long_name’. A variety of parameters are included by default.
Additional arbitrary columns allowed. See pysat.Meta for more information on
creating the initial metadata.

	Note that users may opt for a different
naming scheme for metadata parameters thus the most general code for working
with metadata uses the attached labels,

update units to meters, 'm' for variable
inst.meta[variable, inst.units_label] = 'm'

	If metadata is already stored with the file, creating the Meta object is
generally trivial. If this isn’t the case, it can be tedious to fill out all
information if there are many data parameters. In this case it may be easier
to fill out a text file. A basic convenience function is provided for this
situation. See pysat.Meta.from_csv for more information.

download

Download support significantly lowers the hassle in dealing with any dataset.
Fetch data from the internet.

def download(date_array, data_path=None, user=None, password=None):
 return

	date_array, a list of dates to download data for

	data_path, the full path to the directory to store data

	user, string for username

	password, string for password

Routine should download data and write it to disk.

Optional Routines and Support

Custom Keywords in load Method

pysat supports the definition and use of keywords for an instrument module
so that users may trigger optional features, if provided. All custom keywords
for an instrument module must be defined in the load method.

def load(fnames, tag=None, sat_id=None, custom1=default1, custom2=default2):
 return data, meta

pysat passes any supported custom keywords and values to load with every call.
All custom keywords along with the assigned defaults are copied into the
Instrument object itself under inst.kwargs for use in other areas.

inst = pysat.Instrument(platform, name, custom1=new_value)
show user supplied value for custom1 keyword
print(inst.kwargs['custom1'])
show default value applied for custom2 keyword
print(inst.kwargs['custom2'])

If a user supplies a keyword that is not supported by pysat or by the
specific instrument module then an error is raised.

init

If present, the instrument init method runs once at instrument instantiation.

def init(inst):
 return None

inst is a pysat.Instrument() instance. init should modify inst
in-place as needed; equivalent to a ‘modify’ custom routine.

keywords are not supported within the init module method signature, though
custom keyword support for instruments is available via inst.kwargs.

default

First custom function applied, once per instrument load.

def default(inst):
 return None

inst is a pysat.Instrument() instance. default should modify inst in-place as
needed; equivalent to a ‘modify’ custom routine.

clean

	Cleans instrument for levels supplied in inst.clean_level.

	
	‘clean’ : expectation of good data

	‘dusty’ : probably good data, use with caution

	‘dirty’ : minimal cleaning, only blatant instrument errors removed

	‘none’ : no cleaning, routine not called

def clean(inst):
 return None

inst is a pysat.Instrument() instance. clean should modify inst in-place as
needed; equivalent to a ‘modify’ custom routine.

list_remote_files

Returns a list of available files on the remote server. This method is required
for the Instrument module to support the download_updated_files method, which
makes it trivial for users to ensure they always have the most up to date data.
pysat developers highly encourage the development of this method, when possible.

def list_remote_files(inst):
 return list_like

This method is called by several internal pysat functions, and can be directly
called by the user through the inst.remote_file_list command. The user can
search for subsets of files through optional keywords, such as

inst.remote_file_list(year=2019)
inst.remote_file_list(year=2019, month=1, day=1)

Logging

pysat is connected to the Python logging module. This allows users to set
the desired level of direct feedback, as well as where feedback statements
are delivered. The following line in each module is encouraged at the top-level
so that the instrument module can provide feedback using the same mechanism

logger = logging.getLogger(__name__)

Within any instrument module,

logger.info(information_string)
logger.warning(warning_string)
logger.debug(debug_string)

will direct information, warnings, and debug statements appropriately.

Testing Support

All modules defined in the __init__.py for pysat/instruments are automatically
tested when pysat code is tested. To support testing all of the required
routines, additional information is required by pysat.

Example code from dmsp_ivm.py. The attributes are set at the top level simply
by defining variable names with the proper info. The various satellites within
DMSP, F11, F12, F13 are separated out using the sat_id parameter. ‘utd’ is used
as a tag to delineate that the data contains the UTD developed quality flags.

platform = 'dmsp'
name = 'ivm'
tags = {'utd': 'UTDallas DMSP data processing',
 '': 'Level 1 data processing'}
sat_ids = {'f11': ['utd', ''], 'f12': ['utd', ''], 'f13': ['utd', ''],
 'f14': ['utd', ''], 'f15': ['utd', ''], 'f16': [''], 'f17': [''],
 'f18': ['']}
_test_dates = {'f11': {'utd': pysat.datetime(1998, 1, 2)},
 'f12': {'utd': pysat.datetime(1998, 1, 2)},
 'f13': {'utd': pysat.datetime(1998, 1, 2)},
 'f14': {'utd': pysat.datetime(1998, 1, 2)},
 'f15': {'utd': pysat.datetime(2017, 12, 30)}}

 # support load routine
 def load(fnames, tag=None, sat_id=None):
 # code normally follows, example terminates here

The rationale behind the variable names is explained above under Naming
Conventions. What is important here are the _test_dates. Each of these points
to a specific date for which the unit tests will attempt to download and load
data as part of end-to-end testing. Make sure that the data exists for the
given date. The tags without test dates will not be tested. The leading
underscore in _test_dates ensures that this information is not added to the
instrument’s meta attributes, so it will not be present in IO operations.

Data Acknowledgements

Acknowledging the source of data is key for scientific collaboration. This can
generally be put in the init function of each instrument.

def init(self):
 """Initializes the Instrument object with instrument specific values.

 Runs once upon instantiation.

 Parameters

 inst : (pysat.Instrument)
 Instrument class object

 """

 self.meta.acknowledgements = acknowledgements_string
 self.meta.references = references_string

 return

Supported Instrument Templates

Instrument templates may be found at pysat.instruments.templates
and supporting methods may be found at pysat.instruments.methods.

General

A general instrument template is included with pysat,
pysat.instruments.templates.template_instrument,
that has the full set
of required and optional methods, and docstrings, that may be used as a
starting point for adding a new instrument to pysat.

Note that there are general supporting methods for adding an Instrument.
See General for more.

NASA CDAWeb

A template for NASA CDAWeb pysat support is provided. Several of the routines
within are intended to be used with functools.partial in the new instrument
support code. When writing custom routines with a new instrument file
download support would normally be added via

def download(.....)

Using the CDAWeb template the equivalent action is

download = functools.partial(methods.nasa_cdaweb.download,
 supported_tags)

where supported_tags is defined as dictated by the download function. See the
routines for cnofs_vefi and cnofs_ivm for practical uses of the NASA CDAWeb
support code.

See NASA CDAWeb for more.

Madrigal

A template for Madrigal pysat support is provided. Several of the routines
within are intended to be used with functools.partial in the new instrument
support code. When writing custom routines with a new instrument file download
support would normally be added via

def download(.....)

Using the Madrigal template the equivalent action is

def download(date_array, tag='', sat_id='', data_path=None, user=None,
 password=None):
 methods.madrigal.download(date_array, inst_code=str(madrigal_inst_code),
 kindat=str(madrigal_tag[sat_id][tag]),
 data_path=data_path, user=user,
 password=password)

See the routines for dmsp_ivm and jro_isr for practical uses of the Madrigal
support code.

Additionally, use of the methods.madrigal class should acknowledge the CEDAR
rules of the road. This can be done by Adding

def init(self):

 print(methods.madrigal.cedar_rules())
 return

to each routine that uses Madrigal data access.

See NASA ICON for more.

API

Instrument

	
class pysat.Instrument(platform=None, name=None, tag=None, inst_id=None, sat_id=None, clean_level='clean', update_files=None, pad=None, orbit_info=None, inst_module=None, multi_file_day=None, manual_org=None, directory_format=None, file_format=None, temporary_file_list=False, strict_time_flag=False, ignore_empty_files=False, units_label='units', name_label='long_name', notes_label='notes', desc_label='desc', plot_label='label', axis_label='axis', scale_label='scale', min_label='value_min', max_label='value_max', fill_label='fill', *arg, **kwargs)

	Download, load, manage, modify and analyze science data.

Deprecated since version 2.3.0: Several attributes and methods will be removed or replaced in pysat 3.0.0:
sat_id, default, multi_file_day, manual_org, units_label, name_label,
notes_label, desc_label, min_label, max_label, fill_label, plot_label,
axis_label, scale_label, and _filter_datetime_input

	Parameters

	
	platform (string) – name of platform/satellite.

	name (string) – name of instrument.

	tag (string, optional) – identifies particular subset of instrument data.

	inst_id (string) – Replaces sat_id

	sat_id (string, optional) – identity within constellation

	clean_level ({'clean','dusty','dirty','none'}, optional) – level of data quality

	pad (pandas.DateOffset, or dictionary, optional) – Length of time to pad the begining and end of loaded data for
time-series processing. Extra data is removed after applying all
custom functions. Dictionary, if supplied, is simply passed to
pandas DateOffset.

	orbit_info (dict) – Orbit information, {‘index’:index, ‘kind’:kind, ‘period’:period}.
See pysat.Orbits for more information.

	inst_module (module, optional) – Provide instrument module directly.
Takes precedence over platform/name.

	update_files (boolean, optional) – If True, immediately query filesystem for instrument files and store.

	temporary_file_list (boolean, optional) – If true, the list of Instrument files will not be written to disk.
Prevents a race condition when running multiple pysat processes.

	strict_time_flag (boolean, option (False)) – If true, pysat will check data to ensure times are unique and
monotonic. In future versions, this will be fixed to True.

	multi_file_day (boolean, optional) – Set to True if Instrument data files for a day are spread across
multiple files and data for day n could be found in a file
with a timestamp of day n-1 or n+1. Deprecated at this level in
pysat 3.0.0.

	manual_org (bool) – if True, then pysat will look directly in pysat data directory
for data files and will not use default /platform/name/tag. Deprecated
in pysat 3.0.0, as this flag is not needed to use directory_format.

	directory_format (str) – directory naming structure in string format. Variables such as
platform, name, and tag will be filled in as needed using python
string formatting. The default directory structure would be
expressed as ‘{platform}/{name}/{tag}’

	file_format (str or NoneType) – File naming structure in string format. Variables such as year,
month, and sat_id will be filled in as needed using python string
formatting. The default file format structure is supplied in the
instrument list_files routine.

	ignore_empty_files (boolean) – if True, the list of files found will be checked to
ensure the filesizes are greater than zero. Empty files are
removed from the stored list of files.

	units_label (str) – String used to label units in storage. Defaults to ‘units’.

	name_label (str) – String used to label long_name in storage. Defaults to ‘name’.

	notes_label (str) – label to use for notes in storage. Defaults to ‘notes’

	desc_label (str) – label to use for variable descriptions in storage. Defaults to ‘desc’

	plot_label (str) – label to use to label variables in plots. Defaults to ‘label’

	axis_label (str) – label to use for axis on a plot. Defaults to ‘axis’

	scale_label (str) – label to use for plot scaling type in storage. Defaults to ‘scale’

	min_label (str) – label to use for typical variable value min limit in storage.
Defaults to ‘value_min’

	max_label (str) – label to use for typical variable value max limit in storage.
Defaults to ‘value_max’

	fill_label (str) – label to use for fill values. Defaults to ‘fill’ but some
implementations will use ‘FillVal’

	
data

	loaded science data

	Type

	pandas.DataFrame

	
date

	date for loaded data

	Type

	pandas.datetime

	
yr

	year for loaded data

	Type

	int

	
bounds

	bounds for loading data, supply array_like for a season with gaps.
Users may provide as a tuple or tuple of lists, but the attribute is
stored as a tuple of lists for consistency

	Type

	(datetime/filename/None, datetime/filename/None)

	
doy

	day of year for loaded data

	Type

	int

	
files

	interface to instrument files

	Type

	pysat.Files

	
meta

	interface to instrument metadata, similar to netCDF 1.6

	Type

	pysat.Meta

	
orbits

	interface to extracting data orbit-by-orbit

	Type

	pysat.Orbits

	
custom

	interface to instrument nano-kernel

	Type

	pysat.Custom

	
kwargs

	keyword arguments passed to instrument loading routine

	Type

	dictionary

Note

Pysat attempts to load the module platform_name.py located in
the pysat/instruments directory. This module provides the underlying
functionality to download, load, and clean instrument data.
Alternatively, the module may be supplied directly
using keyword inst_module.

Examples

1-second mag field data
vefi = pysat.Instrument(platform='cnofs',
 name='vefi',
 tag='dc_b',
 clean_level='clean')
start = pysat.datetime(2009,1,1)
stop = pysat.datetime(2009,1,2)
vefi.download(start, stop)
vefi.load(date=start)
print(vefi['dB_mer'])
print(vefi.meta['db_mer'])

1-second thermal plasma parameters
ivm = pysat.Instrument(platform='cnofs',
 name='ivm',
 tag='',
 clean_level='clean')
ivm.download(start,stop)
ivm.load(2009,1)
print(ivm['ionVelmeridional'])

Ionosphere profiles from GPS occultation
cosmic = pysat.Instrument('cosmic',
 'gps',
 'ionprf',
 altitude_bin=3)
bins profile using 3 km step
cosmic.download(start, stop, user=user, password=password)
cosmic.load(date=start)

	
bounds

	Boundaries for iterating over instrument object by date or file.

	Parameters

	
	start (datetime object, filename, or None (default)) – start of iteration, if None uses first data date.
list-like collection also accepted

	end (datetime object, filename, or None (default)) – end of iteration, inclusive. If None uses last data date.
list-like collection also accepted

Note

Both start and stop must be the same type (date, or filename) or None.
Only the year, month, and day are used for date inputs.

Examples

inst = pysat.Instrument(platform=platform,
 name=name,
 tag=tag)
start = pysat.datetime(2009,1,1)
stop = pysat.datetime(2009,1,31)
inst.bounds = (start,stop)

start2 = pysat.datetetime(2010,1,1)
stop2 = pysat.datetime(2010,2,14)
inst.bounds = ([start, start2], [stop, stop2])

	
concat_data(data, *args, **kwargs)

	Concats data1 and data2 for xarray or pandas as needed

	Parameters

	data (pandas or xarray) – Data to be appended to data already within the Instrument object

	Returns

	Instrument.data modified in place.

	Return type

	void

Notes

For pandas, sort=False is passed along to the underlying
pandas.concat method. If sort is supplied as a keyword, the
user provided value is used instead.

For xarray, dim=’Epoch’ is passed along to xarray.concat
except if the user includes a value for dim as a
keyword argument.

	
copy()

	Deep copy of the entire Instrument object.

	
date

	Date for loaded data.

	
download(start=None, stop=None, freq='D', user=None, password=None, date_array=None, **kwargs)

	Download data for given Instrument object from start to stop.

	Parameters

	
	start (pandas.datetime (yesterday)) – start date to download data

	stop (pandas.datetime (tomorrow)) – stop date to download data

	freq (string) – Stepsize between dates for season, ‘D’ for daily, ‘M’ monthly
(see pandas)

	user (string) – username, if required by instrument data archive

	password (string) – password, if required by instrument data archive

	date_array (list-like) – Sequence of dates to download date for. Takes precendence over
start and stop inputs

	**kwargs (dict) – Dictionary of keywords that may be options for specific instruments

Note

Data will be downloaded to pysat_data_dir/patform/name/tag

If Instrument bounds are set to defaults they are updated
after files are downloaded.

	
download_updated_files(user=None, password=None, **kwargs)

	Grabs a list of remote files, compares to local, then downloads new
files.

	Parameters

	
	user (string) – username, if required by instrument data archive

	password (string) – password, if required by instrument data archive

	**kwargs (dict) – Dictionary of keywords that may be options for specific instruments

Note

Data will be downloaded to pysat_data_dir/patform/name/tag

If Instrument bounds are set to defaults they are updated
after files are downloaded.

	
empty

	Boolean flag reflecting lack of data.

True if there is no Instrument data.

	
generic_meta_translator(meta_to_translate)

	Translates the metadate contained in an object into a dictionary
suitable for export.

	Parameters

	meta_to_translate (Meta) – The metadata object to translate

	Returns

	A dictionary of the metadata for each variable of an output file
e.g. netcdf4

	Return type

	dict

	
index

	Returns time index of loaded data.

	
load(yr=None, doy=None, date=None, fname=None, fid=None, verifyPad=False)

	Load instrument data into Instrument object .data.

	Parameters

	
	yr (integer) – year for desired data

	doy (integer) – day of year

	date (datetime object) – date to load

	fname ('string') – filename to be loaded

	verifyPad (boolean) – if True, padding data not removed (debug purposes)

	Returns

	

	Return type

	Void. Data is added to self.data

Note

Loads data for a chosen instrument into .data. Any functions chosen
by the user and added to the custom processing queue (.custom.add)
are automatically applied to the data before it is available to
user in .data.

	
next(verifyPad=False)

	Manually iterate through the data loaded in Instrument object.

Bounds of iteration and iteration type (day/file) are set by
bounds attribute.

Note

If there were no previous calls to load then the
first day(default)/file will be loaded.

	
prev(verifyPad=False)

	Manually iterate backwards through the data in Instrument object.

Bounds of iteration and iteration type (day/file)
are set by bounds attribute.

Note

If there were no previous calls to load then the
first day(default)/file will be loaded.

	
remote_date_range(year=None, month=None, day=None)

	Returns fist and last date for remote data. Default behaviour is
to search all files. User may additionally specify a given year,
year/month, or year/month/day combination to return a subset of
available files.

	
remote_file_list(year=None, month=None, day=None)

	List remote files for chosen instrument. Default behaviour is
to return all files. User may additionally specify a given year,
year/month, or year/month/day combination to return a subset of
available files.

	
to_netcdf4(fname=None, base_instrument=None, epoch_name='Epoch', zlib=False, complevel=4, shuffle=True, preserve_meta_case=False, export_nan=None, unlimited_time=True)

	Stores loaded data into a netCDF4 file.

	Parameters

	
	fname (string) – full path to save instrument object to

	base_instrument (pysat.Instrument) – used as a comparison, only attributes that are present with
self and not on base_instrument are written to netCDF

	epoch_name (str) – Label in file for datetime index of Instrument object

	zlib (boolean) – Flag for engaging zlib compression (True - compression on)

	complevel (int) – an integer between 1 and 9 describing the level of compression
desired (default 4). Ignored if zlib=False

	shuffle (boolean) – the HDF5 shuffle filter will be applied before compressing the data
(default True). This significantly improves compression. Default is
True. Ignored if zlib=False.

	preserve_meta_case (bool (False)) – if True, then the variable strings within the MetaData object, which
preserves case, are used to name variables in the written netCDF file.
If False, then the variable strings used to access data from the
Instrument object are used instead. By default, the variable strings
on both the data and metadata side are the same, though this relationship
may be altered by a user.

	export_nan (list or None) – By default, the metadata variables where a value of NaN is allowed
and written to the netCDF4 file is maintained by the Meta object
attached to the pysat.Instrument object. A list supplied here
will override the settings provided by Meta, and all parameters
included will be written to the file. If not listed
and a value is NaN then that attribute simply won’t be included in
the netCDF4 file.

	unlimited_time (bool) – If True, then the main epoch dimension will be set to ‘unlimited’
within the netCDF4 file. (default=True)

Note

Stores 1-D data along dimension ‘epoch’ - the date time index.

Stores higher order data (e.g. dataframes within series) separately

	The name of the main variable column is used to prepend subvariable
names within netCDF, var_subvar_sub

	A netCDF4 dimension is created for each main variable column
with higher order data; first dimension Epoch

	The index organizing the data stored as a dimension variable

	from_netcdf4 uses the variable dimensions to reconstruct data
structure

All attributes attached to instrument meta are written to netCDF attrs
with the exception of ‘Date_End’, ‘Date_Start’, ‘File’, ‘File_Date’,
‘Generation_Date’, and ‘Logical_File_ID’. These are defined within to_netCDF
at the time the file is written, as per the adopted standard,
SPDF ISTP/IACG Modified for NetCDF. Atrributes ‘Conventions’ and
‘Text_Supplement’ are given default values if not present.

	
today()

	Returns today’s date, with no hour, minute, second, etc.

	Parameters

	None –

	Returns

	Today’s date

	Return type

	datetime

	
tomorrow()

	Returns tomorrow’s date, with no hour, minute, second, etc.

	Parameters

	None –

	Returns

	Tomorrow’s date

	Return type

	datetime

	
variables

	Returns list of variables within loaded data.

	
yesterday()

	Returns yesterday’s date, with no hour, minute, second, etc.

	Parameters

	None –

	Returns

	Yesterday’s date

	Return type

	datetime

Instrument Methods

The following methods support the variety of actions needed
by underlying pysat.Instrument modules.

Demeter

Provides non-instrument routines for DEMETER microsatellite data

Deprecated since version 2.3.0: This module has been removed from pysat in the 3.0.0 release and
can now be found in pysatIncubator (https://github.com/pysat/pysatIncubator)

	
pysat.instruments.methods.demeter.download(date_array, tag, sat_id, data_path=None, user=None, password=None)

	Download

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator.instruments.methods.demeter

	
pysat.instruments.methods.demeter.bytes_to_float(chunk)

	Convert a chunk of bytes to a float

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator.instruments.methods.demeter

	Parameters

	chunk (string or bytes) – A chunk of bytes

	Returns

	value – A 32 bit float

	Return type

	float

	
pysat.instruments.methods.demeter.load_general_header(fhandle)

	Load the general header block (block 1 for each time)

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator.instruments.methods.demeter

	Parameters

	fhandle ((file handle)) – File handle

	Returns

	
	data (list) – List of data values containing: P field,
Number of days from 01/01/1950, number of miliseconds in the day,
UT as datetime, Orbit number, downward (False) upward (True) indicator

	meta (dict) – Dictionary with meta data for keys: ‘telemetry station’,
‘software processing version’, ‘software processing subversion’,
‘calibration file version’, and ‘calibration file subversion’,
‘data names’, ‘data units’

	
pysat.instruments.methods.demeter.load_location_parameters(fhandle)

	Load the orbital and geomagnetic parameter block (block 1 for each
time)

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator.instruments.methods.demeter

	Parameters

	fhandle ((file handle)) – File handle

	Returns

	
	data (list) – List of data values containing: geoc lat, geoc lon, alt, lt, geom
lat, geom lon, mlt, inv lat, L-shell, geoc lat of conj point, geoc
lon of conj point, geoc lat of N conj point at 110 km, geoc lon of
N conj point at 110 km, geoc lat of S conj point at 110 km, geoc
lon of S conj point at 110 km, components of magnetic field at sat
point, proton gyrofreq at sat point, solar position in geog coords

	meta (dict) – Dictionary with meta data for keys: ‘software processing version’,
‘software processing subversion’, ‘data names’, ‘data units’

	
pysat.instruments.methods.demeter.load_attitude_parameters(fhandle)

	Load the attitude parameter block (block 1 for each time)

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator.instruments.methods.demeter

	Parameters

	fhandle ((file handle)) – File handle

	Returns

	
	data (list) – list of data values containing: matrix elements from satellite coord
system to geographic coordinate system, matrix elements from geographic
coordinate system to local geomagnetic coordinate system, quality
index of attitude parameters.

	meta (dict) – Dictionary with meta data for keys: ‘software processing version’,
‘software processing subversion’, ‘data names’, ‘data units’

	
pysat.instruments.methods.demeter.load_binary_file(fname, load_experiment_data)

	Load the binary data from a DEMETER file

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator.instruments.methods.demeter

	Parameters

	
	fname (string) – Filename

	load_experiment_data (function) – Function to load experiment data, taking the file handle as input

	Returns

	
	data (np.array) – Data from file stored in a numpy array

	meta (dict) – Meta data for file, including data names and units

	
pysat.instruments.methods.demeter.set_metadata(name, meta_dict)

	Set metadata for each DEMETER instrument, using dict containing
metadata

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatIncubator.instruments.methods.demeter

	Parameters

	
	name (string) – DEMETER instrument name

	meta_dict (dict) – Dictionary containing metadata information and data attributes. Data
attributes are available in the keys ‘data names’ and ‘data units’

	Returns

	meta – Meta class boject

	Return type

	pysat.Meta

General

Provides generalized routines for integrating instruments into pysat.

	
pysat.instruments.methods.general.convert_timestamp_to_datetime(inst, sec_mult=1.0)

	Use datetime instead of timestamp for Epoch

	Parameters

	
	inst (pysat.Instrument) – associated pysat.Instrument object

	sec_mult (float) – Multiplier needed to convert epoch time to seconds (default=1.0)

	
pysat.instruments.methods.general.list_files(tag=None, sat_id=None, data_path=None, format_str=None, supported_tags=None, fake_daily_files_from_monthly=False, two_digit_year_break=None, file_cadance=datetime.timedelta(days=1))

	Return a Pandas Series of every file for chosen satellite data.

This routine provides a standard interfacefor pysat instrument modules.

Deprecated since version 2.3.0: The fake_daily_files_from_monthly kwarg has been deprecated and replaced
with file_cadance in pysat 3.0.0.

	Parameters

	
	tag (string or NoneType) – Denotes type of file to load. Accepted types are <tag strings>.
(default=None)

	sat_id (string or NoneType) – Specifies the satellite ID for a constellation. Not used.
(default=None)

	data_path (string or NoneType) – Path to data directory. If None is specified, the value previously
set in Instrument.files.data_path is used. (default=None)

	format_str (string or NoneType) – User specified file format. If None is specified, the default
formats associated with the supplied tags are used. (default=None)

	supported_tags (dict or NoneType) – keys are sat_id, each containing a dict keyed by tag
where the values file format template strings. (default=None)

	fake_daily_files_from_monthly (bool) – Some CDAWeb instrument data files are stored by month, interfering
with pysat’s functionality of loading by day. This flag, when true,
appends daily dates to monthly files internally. These dates are
used by load routine in this module to provide data by day.
This keyword arg has been deprecated. In pysat 2.3.0, setting
file_cadance=dt.datetime(days=1) is equivalent to setting this to False,
while using file_cadance=pds.DateOffset(months=1) is equivalent to
setting this to True. (default=False)

	two_digit_year_break (int) – If filenames only store two digits for the year, then
‘1900’ will be added for years >= two_digit_year_break
and ‘2000’ will be added for years < two_digit_year_break.

	file_cadence (dt.timedelta or pds.DateOffset) – pysat assumes a daily file cadence, but some instrument data file
contain longer periods of time. This parameter allows the specification
of regular file cadences greater than or equal to a day (e.g., weekly,
monthly, or yearly). In pysat 2.3.0, only daily and monthly cadances
are supported. (default=dt.timedelta(days=1))

	Returns

	pysat.Files.from_os – A class containing the verified available files

	Return type

	(pysat._files.Files)

Examples

fname = 'cnofs_vefi_bfield_1sec_{year:04d}{month:02d}{day:02d}_v05.cdf'
supported_tags = {'dc_b': fname}
list_files = functools.partial(nasa_cdaweb.list_files,
 supported_tags=supported_tags)

fname = 'cnofs_cindi_ivm_500ms_{year:4d}{month:02d}{day:02d}_v01.cdf'
supported_tags = {'': fname}
list_files = functools.partial(mm_gen.list_files,
 supported_tags=supported_tags)

	
pysat.instruments.methods.general.remove_leading_text(inst, target=None)

	Removes leading text on variable names
:param inst: associated pysat.Instrument object
:type inst: pysat.Instrument
:param target: Leading string to remove. If none supplied, returns unmodified
:type target: str or list of strings

	Returns

	Modifies Instrument object in place

	Return type

	None

NASA CDAWeb

Provides default routines for integrating NASA CDAWeb instruments into
pysat. Adding new CDAWeb datasets should only require mininal user
intervention.

	
pysat.instruments.methods.nasa_cdaweb.load(fnames, tag=None, sat_id=None, fake_daily_files_from_monthly=False, flatten_twod=True)

	Load NASA CDAWeb CDF files.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatNASA.instruments.methods.cdaweb

This routine is intended to be used by pysat instrument modules supporting
a particular NASA CDAWeb dataset.

	Parameters

	
	fnames ((pandas.Series)) – Series of filenames

	tag ((str or NoneType)) – tag or None (default=None)

	sat_id ((str or NoneType)) – satellite id or None (default=None)

	fake_daily_files_from_monthly (bool) – Some CDAWeb instrument data files are stored by month, interfering
with pysat’s functionality of loading by day. This flag, when true,
parses of daily dates to monthly files that were added internally
by the list_files routine, when flagged. These dates are
used here to provide data by day.

	flatted_twod (bool) – Flattens 2D data into different columns of root DataFrame rather
than produce a Series of DataFrames

	Returns

	
	data ((pandas.DataFrame)) – Object containing satellite data

	meta ((pysat.Meta)) – Object containing metadata such as column names and units

Examples

within the new instrument module, at the top level define
a new variable named load, and set it equal to this load method
code below taken from cnofs_ivm.py.

support load routine
use the default CDAWeb method
load = cdw.load

	
pysat.instruments.methods.nasa_cdaweb.list_files(tag=None, sat_id=None, data_path=None, format_str=None, supported_tags=None, fake_daily_files_from_monthly=False, two_digit_year_break=None)

	Return a Pandas Series of every file for chosen satellite data.

Deprecated since version 2.2.0: list_files will be removed in pysat 3.0.0, it will be replaced by the
copy in instruments.methods.general

This routine is intended to be used by pysat instrument modules supporting
a particular NASA CDAWeb dataset.

	Parameters

	
	tag ((string or NoneType)) – Denotes type of file to load. Accepted types are <tag strings>.
(default=None)

	sat_id ((string or NoneType)) – Specifies the satellite ID for a constellation. Not used.
(default=None)

	data_path ((string or NoneType)) – Path to data directory. If None is specified, the value previously
set in Instrument.files.data_path is used. (default=None)

	format_str ((string or NoneType)) – User specified file format. If None is specified, the default
formats associated with the supplied tags are used. (default=None)

	supported_tags ((dict or NoneType)) – keys are sat_id, each containing a dict keyed by tag
where the values file format template strings. (default=None)

	fake_daily_files_from_monthly ((bool)) – Some CDAWeb instrument data files are stored by month, interfering
with pysat’s functionality of loading by day. This flag, when true,
appends daily dates to monthly files internally. These dates are
used by load routine in this module to provide data by day.

	two_digit_year_break ((int)) – If filenames only store two digits for the year, then
‘1900’ will be added for years >= two_digit_year_break
and ‘2000’ will be added for years < two_digit_year_break.

	Returns

	pysat.Files.from_os – A class containing the verified available files

	Return type

	(pysat._files.Files)

Examples

fname = 'cnofs_vefi_bfield_1sec_{year:04d}{month:02d}{day:02d}_v05.cdf'
supported_tags = {'dc_b': fname}
list_files = functools.partial(nasa_cdaweb.list_files,
 supported_tags=supported_tags)

fname = 'cnofs_cindi_ivm_500ms_{year:4d}{month:02d}{day:02d}_v01.cdf'
supported_tags = {'': fname}
list_files = functools.partial(cdw.list_files,
 supported_tags=supported_tags)

	
pysat.instruments.methods.nasa_cdaweb.list_remote_files(tag, sat_id, remote_site='https://cdaweb.gsfc.nasa.gov', supported_tags=None, user=None, password=None, fake_daily_files_from_monthly=False, two_digit_year_break=None, delimiter=None, year=None, month=None, day=None)

	Return a Pandas Series of every file for chosen remote data.

Deprecated since version 2.3.0: This routine will be removed in pysat 3.0.0, it will be moved to the
pysatNASA repository. Also, as of 2.2.0 the year/month/day keywords
will be removed in pysat 3.0.0, they will be replaced with a start/stop
syntax consistent with the download routine

This routine is intended to be used by pysat instrument modules supporting
a particular NASA CDAWeb dataset.

	Parameters

	
	tag ((string or NoneType)) – Denotes type of file to load. Accepted types are <tag strings>.
(default=None)

	sat_id ((string or NoneType)) – Specifies the satellite ID for a constellation.
(default=None)

	remote_site ((string or NoneType)) – Remote site to download data from
(default=’https://cdaweb.gsfc.nasa.gov’)

	supported_tags (dict) – dict of dicts. Keys are supported tag names for download. Value is
a dict with ‘dir’, ‘remote_fname’, ‘local_fname’. Inteded to be
pre-set with functools.partial then assigned to new instrument code.

	user ((string or NoneType)) – Username to be passed along to resource with relevant data.
(default=None)

	password ((string or NoneType)) – User password to be passed along to resource with relevant data.
(default=None)

	fake_daily_files_from_monthly (bool) – Some CDAWeb instrument data files are stored by month. This flag,
when true, accomodates this reality with user feedback on a monthly
time frame.
(default=False)

	two_digit_year_break ((int or NoneType)) – If filenames only store two digits for the year, then
‘1900’ will be added for years >= two_digit_year_break
and ‘2000’ will be added for years < two_digit_year_break.
(default=None)

	delimiter ((string or NoneType)) – If filename is delimited, then provide delimiter alone e.g. ‘_’
(default=None)

	year ((int or NoneType)) – Selects a given year to return remote files for. None returns all
years.
(default=None)

	month ((int or NoneType)) – Selects a given month to return remote files for. None returns all
months. Requires year to be defined.
(default=None)

	day ((int or NoneType)) – Selects a given day to return remote files for. None returns all
days. Requires year and month to be defined.
(default=None)

	Returns

	pysat.Files.from_os – A class containing the verified available files

	Return type

	(pysat._files.Files)

Examples

fname = 'cnofs_vefi_bfield_1sec_{year:04d}{month:02d}{day:02d}_v05.cdf'
supported_tags = {'dc_b': fname}
list_remote_files = functools.partial(nasa_cdaweb.list_remote_files,
 supported_tags=supported_tags)

fname = 'cnofs_cindi_ivm_500ms_{year:4d}{month:02d}{day:02d}_v01.cdf'
supported_tags = {'': fname}
list_remote_files = functools.partial(cdw.list_remote_files,
 supported_tags=supported_tags)

	
pysat.instruments.methods.nasa_cdaweb.download(supported_tags, date_array, tag, sat_id, remote_site='https://cdaweb.gsfc.nasa.gov', data_path=None, user=None, password=None, fake_daily_files_from_monthly=False, multi_file_day=False)

	Routine to download NASA CDAWeb CDF data.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatNASA.instruments.methods.cdaweb

This routine is intended to be used by pysat instrument modules supporting
a particular NASA CDAWeb dataset.

	Parameters

	
	supported_tags (dict) – dict of dicts. Keys are supported tag names for download. Value is
a dict with ‘dir’, ‘remote_fname’, ‘local_fname’. Inteded to be
pre-set with functools.partial then assigned to new instrument code.

	date_array (array_like) – Array of datetimes to download data for. Provided by pysat.

	tag (str or NoneType (None)) – tag or None

	sat_id ((str or NoneType)) – satellite id or None (default=None)

	remote_site ((string or NoneType)) – Remote site to download data from
(default=’https://cdaweb.gsfc.nasa.gov’)

	data_path ((string or NoneType)) – Path to data directory. If None is specified, the value previously
set in Instrument.files.data_path is used. (default=None)

	user ((string or NoneType)) – Username to be passed along to resource with relevant data.
(default=None)

	password ((string or NoneType)) – User password to be passed along to resource with relevant data.
(default=None)

	fake_daily_files_from_monthly (bool) – Some CDAWeb instrument data files are stored by month. This flag,
when true, accomodates this reality with user feedback on a monthly
time frame.

	Returns

	Void – Downloads data to disk.

	Return type

	(NoneType)

Examples

download support added to cnofs_vefi.py using code below
rn = '{year:4d}/cnofs_vefi_bfield_1sec_{year:4d}{month:02d}{day:02d}'+
 '_v05.cdf'
ln = 'cnofs_vefi_bfield_1sec_{year:4d}{month:02d}{day:02d}_v05.cdf'
dc_b_tag = {'dir':'/pub/data/cnofs/vefi/bfield_1sec',
 'remote_fname': rn,
 'local_fname': ln}
supported_tags = {'dc_b': dc_b_tag}

download = functools.partial(nasa_cdaweb.download,
 supported_tags=supported_tags)

NASA ICON

Provides non-instrument specific routines for ICON data

Deprecated since version 2.3.0: This module has been removed from pysat in the 3.0.0 release and
can now be found in pysatIncubator (https://github.com/pysat/pysatNASA)

	
pysat.instruments.methods.icon.list_remote_files(tag, sat_id, user=None, password=None, supported_tags=None, year=None, month=None, day=None, start=None, stop=None)

	Return a Pandas Series of every file for chosen remote data.

This routine is intended to be used by pysat instrument modules supporting
a particular UC-Berkeley SSL dataset related to ICON.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatNASA.instruments.methods.icon

	Parameters

	
	tag (string or NoneType) – Denotes type of file to load. Accepted types are <tag strings>.
(default=None)

	sat_id (string or NoneType) – Specifies the satellite ID for a constellation. Not used.
(default=None)

	user (string or NoneType) – Username to be passed along to resource with relevant data.
(default=None)

	password (string or NoneType) – User password to be passed along to resource with relevant data.
(default=None)

	start (dt.datetime or NoneType) – Starting time for file list. A None value will start with the first
file found.
(default=None)

	stop (dt.datetime or NoneType) – Ending time for the file list. A None value will stop with the last
file found.
(default=None)

	Returns

	A Series formatted for the Files class (pysat._files.Files)
containing filenames and indexed by date and time

	Return type

	pandas.Series

	
pysat.instruments.methods.icon.ssl_download(date_array, tag, sat_id, data_path=None, user=None, password=None, supported_tags=None)

	Download ICON data from public area of SSL ftp server

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0. It is replaced by the
pysatNASA.instruments.methods.cdaweb.download method.

	Parameters

	
	date_array (array-like) – list of datetimes to download data for. The sequence of dates need not
be contiguous.

	tag (string) – Tag identifier used for particular dataset. This input is provided by
pysat. (default=’’)

	sat_id (string) – Satellite ID string identifier used for particular dataset. This input
is provided by pysat. (default=’’)

	data_path (string) – Path to directory to download data to. (default=None)

	user (string) – User string input used for download. Provided by user and passed via
pysat. If an account is required for downloads this routine here must
error if user not supplied. (default=None)

	password (string) – Password for data download. (default=None)

	**kwargs (dict) – Additional keywords supplied by user when invoking the download
routine attached to a pysat.Instrument object are passed to this
routine via kwargs.

Madrigal

Provides default routines for integrating CEDAR Madrigal instruments into
pysat, reducing the amount of user intervention.

Deprecated since version 2.3.0: This module has been removed from pysat in the 3.0.0 release and
can now be found in pysatMadrigal (https://github.com/pysat/pysatMadrigal)

	
pysat.instruments.methods.madrigal.cedar_rules()

	General acknowledgement statement for Madrigal data.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatMadrigal.instruments.methods.madrigal

	Returns

	ackn – String with general acknowledgement for all CEDAR Madrigal data

	Return type

	string

	
pysat.instruments.methods.madrigal.load(fnames, tag=None, sat_id=None, xarray_coords=[])

	Loads data from Madrigal into Pandas.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatMadrigal.instruments.methods.madrigal

This routine is called as needed by pysat. It is not intended
for direct user interaction.

	Parameters

	
	fnames (array-like) – iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.

	tag (string ('')) – tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. While
tag defaults to None here, pysat provides ‘’ as the default
tag unless specified by user at Instrument instantiation.

	sat_id (string ('')) – Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	xarray_coords (list) – List of keywords to use as coordinates if xarray output is desired
instead of a Pandas DataFrame (default=[])

	Returns

	
	data (pds.DataFrame or xr.DataSet) – A pandas DataFrame or xarray DataSet holding the data from the HDF5
file

	metadata (pysat.Meta) – Metadata from the HDF5 file, as well as default values from pysat

Examples

	::

	inst = pysat.Instrument(‘jro’, ‘isr’, ‘drifts’)
inst.load(2010,18)

	
pysat.instruments.methods.madrigal.download(date_array, inst_code=None, kindat=None, data_path=None, user=None, password=None, url='http://cedar.openmadrigal.org', file_format='hdf5')

	Downloads data from Madrigal.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatMadrigal.instruments.methods.madrigal

	Parameters

	
	date_array (array-like) – list of datetimes to download data for. The sequence of dates need not
be contiguous.

	inst_code (string (None)) – Madrigal instrument code(s), cast as a string. If multiple are used,
separate them with commas.

	kindat (string (None)) – Experiment instrument code(s), cast as a string. If multiple are used,
separate them with commas.

	data_path (string (None)) – Path to directory to download data to.

	user (string (None)) – User string input used for download. Provided by user and passed via
pysat. If an account
is required for dowloads this routine here must error if user not
supplied.

	password (string (None)) – Password for data download.

	url (string (‘http://cedar.openmadrigal.org’)) – URL for Madrigal site

	file_format (string ('hdf5')) – File format for Madrigal data. Load routines currently only accept
‘hdf5’, but any of the Madrigal options may be used here.

	Returns

	Void – Downloads data to disk.

	Return type

	(NoneType)

Notes

The user’s names should be provided in field user. Ruby Payne-Scott should
be entered as Ruby+Payne-Scott

The password field should be the user’s email address. These parameters
are passed to Madrigal when downloading.

The affiliation field is set to pysat to enable tracking of pysat
downloads.

	
pysat.instruments.methods.madrigal.filter_data_single_date(self)

	Filters data to a single date.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatMadrigal.instruments.methods.madrigal

	Parameters

	self (pysat.Instrument) – This object

Note

Madrigal serves multiple days within a single JRO file
to counter this, we will filter each loaded day so that it only
contains the relevant day of data. This is only applied if loading
by date. It is not applied when supplying pysat with a specific
filename to load, nor when data padding is enabled. Note that when
data padding is enabled the final data available within the instrument
will be downselected by pysat to only include the date specified.

This routine is intended to be added to the Instrument
nanokernel processing queue via

inst = pysat.Instrument()
inst.custom.add(filter_data_single_date, 'modify')

This function will then be automatically applied to the
Instrument object data on every load by the pysat nanokernel.

Warning

For the best performance, this function should be added first in the queue.
This may be ensured by setting the default function in a
pysat instrument file to this one.

within platform_name.py set

default = pysat.instruments.methods.madrigal.filter_data_single_date

at the top level

Space Weather

Provides default routines for solar wind and geospace indices

Deprecated since version 2.3.0: This Instrument module has been removed from pysat in the 3.0.0 release and
can now be found in pysatSpaceWeather
(https://github.com/pysat/pysatSpaceWeather)

	
pysat.instruments.methods.sw.calc_daily_Ap(ap_inst, ap_name='3hr_ap', daily_name='Ap', running_name=None)

	Calculate the daily Ap index from the 3hr ap index

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and has been replaced
with pysatSpaceWeather.instruments.methods.kp_ap.calc_daily_Ap

	Parameters

	
	ap_inst ((pysat.Instrument)) – pysat instrument containing 3-hourly ap data

	ap_name ((str)) – Column name for 3-hourly ap data (default=’3hr_ap’)

	daily_name ((str)) – Column name for daily Ap data (default=’Ap’)

	running_name ((str or NoneType)) – Column name for daily running average of ap, not output if None
(default=None)

	Returns

	Void

	Return type

	updates intrument to include daily Ap index under daily_name

Notes

Ap is the mean of the 3hr ap indices measured for a given day

Option for running average is included since this information is used
by MSIS when running with sub-daily geophysical inputs

	
pysat.instruments.methods.sw.combine_f107(standard_inst, forecast_inst, start=None, stop=None)

	Combine the output from the measured and forecasted F10.7 sources

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and has been replaced
with pysatSpaceWeather.instruments.methods.f107.combine_f107

	Parameters

	
	standard_inst ((pysat.Instrument or NoneType)) – Instrument object containing data for the ‘sw’ platform, ‘f107’ name,
and ‘’, ‘all’, ‘prelim’, or ‘daily’ tag

	forecast_inst ((pysat.Instrument or NoneType)) – Instrument object containing data for the ‘sw’ platform, ‘f107’ name,
and ‘prelim’, ‘45day’ or ‘forecast’ tag

	start ((dt.datetime or NoneType)) – Starting time for combining data, or None to use earliest loaded
date from the pysat Instruments (default=None)

	stop ((dt.datetime)) – Ending time for combining data, or None to use the latest loaded date
from the pysat Instruments (default=None)

	Returns

	f107_inst – Instrument object containing F10.7 observations for the desired period
of time, merging the standard, 45day, and forecasted values based on
their reliability

	Return type

	(pysat.Instrument)

Notes

Merging prioritizes the standard data, then the 45day data, and finally
the forecast data

Will not attempt to download any missing data, but will load data

	
pysat.instruments.methods.sw.combine_kp(standard_inst=None, recent_inst=None, forecast_inst=None, start=None, stop=None, fill_val=nan)

	Combine the output from the different Kp sources for a range of dates

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and has been replaced
with pysatSpaceWeather.instruments.methods.kp_ap.combine_kp

	Parameters

	
	standard_inst ((pysat.Instrument or NoneType)) – Instrument object containing data for the ‘sw’ platform, ‘kp’ name,
and ‘’ tag or None to exclude (default=None)

	recent_inst ((pysat.Instrument or NoneType)) – Instrument object containing data for the ‘sw’ platform, ‘kp’ name,
and ‘recent’ tag or None to exclude (default=None)

	forecast_inst ((pysat.Instrument or NoneType)) – Instrument object containing data for the ‘sw’ platform, ‘kp’ name,
and ‘forecast’ tag or None to exclude (default=None)

	start ((dt.datetime or NoneType)) – Starting time for combining data, or None to use earliest loaded
date from the pysat Instruments (default=None)

	stop ((dt.datetime)) – Ending time for combining data, or None to use the latest loaded date
from the pysat Instruments (default=None)

	fill_val ((int or float)) – Desired fill value (since the standard instrument fill value differs
from the other sources) (default=np.nan)

	Returns

	kp_inst – Instrument object containing Kp observations for the desired period of
time, merging the standard, recent, and forecasted values based on
their reliability

	Return type

	(pysat.Instrument)

Notes

Merging prioritizes the standard data, then the recent data, and finally
the forecast data

Will not attempt to download any missing data, but will load data

	
pysat.instruments.methods.sw.convert_ap_to_kp(ap_data, fill_val=-1, ap_name='ap')

	Convert Ap into Kp

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and has been replaced
with pysatSpaceWeather.instruments.methods.kp_ap.convert_ap_to_kp

	Parameters

	
	ap_data (array-like) – Array-like object containing Ap data

	fill_val (int, float, NoneType) – Fill value for the data set (default=-1)

	ap_name (str) – Name of the input ap

	Returns

	
	kp_data (array-like) – Array-like object containing Kp data

	meta (Metadata) – Metadata object containing information about transformed data

Instrument Templates

General Instrument

This is a template for a pysat.Instrument support file.
Modify this file as needed when adding a new Instrument to pysat.

This is a good area to introduce the instrument, provide background
on the mission, operations, instrumentation, and measurements.

Also a good place to provide contact information. This text will
be included in the pysat API documentation.

Properties

	platform

	List platform string here

	name

	List name string here

	sat_id

	List supported sat_ids here

	tag

	List supported tag strings here

Note

	Optional section, remove if no notes

Warning

	Optional section, remove if no warnings

	Two blank lines needed afterward for proper formatting

Examples

Example code can go here

Authors

Author name and institution

	
pysat.instruments.templates.template_instrument.init(self)

	Initializes the Instrument object with instrument specific values.

Runs once upon instantiation. Object modified in place. Optional.

	Parameters

	self (pysat.Instrument) – This object

	
pysat.instruments.templates.template_instrument.default(self)

	Default customization function.

This routine is automatically applied to the Instrument object
on every load by the pysat nanokernel (first in queue). Object
modified in place.

	Parameters

	self (pysat.Instrument) – This object

	
pysat.instruments.templates.template_instrument.load(fnames, tag=None, sat_id=None, custom_keyword=None)

	Loads PLATFORM data into (PANDAS/XARRAY).

This routine is called as needed by pysat. It is not intended
for direct user interaction.

	Parameters

	
	fnames (array-like) – iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.

	tag (string) – tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. While
tag defaults to None here, pysat provides ‘’ as the default
tag unless specified by user at Instrument instantiation. (default=’’)

	sat_id (string) – Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. (default=’’)

	custom_keyword (type to be set) – Developers may include any custom keywords, with default values
defined in the method signature. This is included here as a
place holder and should be removed.

	Returns

	Data and Metadata are formatted for pysat. Data is a
pandas DataFrame or xarray DataSet while metadata is a pysat.Meta
instance.

	Return type

	data, metadata

Note

Any additional keyword arguments passed to pysat.Instrument
upon instantiation are passed along to this routine.

Examples

inst = pysat.Instrument('ucar', 'tiegcm')
inst.load(2019, 1)

	
pysat.instruments.templates.template_instrument.list_files(tag=None, sat_id=None, data_path=None, format_str=None)

	Produce a list of files corresponding to PLATFORM/NAME.

This routine is invoked by pysat and is not intended for direct
use by the end user. Arguments are provided by pysat.

	Parameters

	
	tag (string) – tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. (default=’’)

	sat_id (string) – Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. (default=’’)

	data_path (string) – Full path to directory containing files to be loaded. This
is provided by pysat. The user may specify their own data path
at Instrument instantiation and it will appear here. (default=None)

	format_str (string) – String template used to parse the datasets filenames. If a user
supplies a template string at Instrument instantiation
then it will appear here, otherwise defaults to None. (default=None)

	Returns

	Series of filename strings, including the path, indexed by datetime.

	Return type

	pandas.Series

Examples

If a filename is SPORT_L2_IVM_2019-01-01_v01r0000.NC then the template
is 'SPORT_L2_IVM_{year:04d}-{month:02d}-{day:02d}_' +
'v{version:02d}r{revision:04d}.NC'

Note

The returned Series should not have any duplicate datetimes. If there are
multiple versions of a file the most recent version should be kept and the
rest discarded. This routine uses the pysat.Files.from_os constructor, thus
the returned files are up to pysat specifications.

Multiple data levels may be supported via the ‘tag’ input string.
Multiple instruments via the sat_id string.

	
pysat.instruments.templates.template_instrument.list_remote_files(tag, sat_id, user=None, password=None)

	Return a Pandas Series of every file for chosen remote data.

This routine is intended to be used by pysat instrument modules supporting
a particular NASA CDAWeb dataset.

	Parameters

	
	tag (string or NoneType) – Denotes type of file to load. Accepted types are <tag strings>.
(default=None)

	sat_id (string or NoneType) – Specifies the satellite ID for a constellation. Not used.
(default=None)

	user (string or NoneType) – Username to be passed along to resource with relevant data.
(default=None)

	password (string or NoneType) – User password to be passed along to resource with relevant data.
(default=None)

	Returns

	A Series formatted for the Files class (pysat._files.Files)
containing filenames and indexed by date and time

	Return type

	pandas.Series

	
pysat.instruments.templates.template_instrument.download(date_array, tag, sat_id, data_path=None, user=None, password=None, custom_keywords=None)

	Placeholder for PLATFORM/NAME downloads.

This routine is invoked by pysat and is not intended for direct use by the
end user.

	Parameters

	
	date_array (array-like) – list of datetimes to download data for. The sequence of dates need not
be contiguous.

	tag (string) – Tag identifier used for particular dataset. This input is provided by
pysat. (default=’’)

	sat_id (string) – Satellite ID string identifier used for particular dataset. This input
is provided by pysat. (default=’’)

	data_path (string) – Path to directory to download data to. (default=None)

	user (string) – User string input used for download. Provided by user and passed via
pysat. If an account is required for dowloads this routine here must
error if user not supplied. (default=None)

	password (string) – Password for data download. (default=None)

	custom_keywords (placeholder) – Additional keywords supplied by user when invoking the download
routine attached to a pysat.Instrument object are passed to this
routine. Use of custom keywords here is discouraged.

	
pysat.instruments.templates.template_instrument.clean(inst)

	Routine to return PLATFORM/NAME data cleaned to the specified level

Cleaning level is specified in inst.clean_level and pysat
will accept user input for several strings. The clean_level is
specified at instantiation of the Instrument object.

‘clean’ : All parameters should be good, suitable for statistical and case studies
‘dusty’ : All paramers should generally be good though same may not be great
‘dirty’ : There are data areas that have issues, data should be used with caution
‘none’ : No cleaning applied, routine not called in this case.

	Parameters

	inst (pysat.Instrument) – Instrument class object, whose attribute clean_level is used to return
the desired level of data selectivity.

Madrigal Pandas

Generic module for loading netCDF4 files into the pandas format within pysat.

This file may be used as a template for adding pysat support for a new dataset
based upon netCDF4 files, or other file types (with modification).

This routine may also be used to add quick local support for a netCDF4 based
dataset without having to define an instrument module for pysat. Relevant
parameters may be specified when instantiating this Instrument object to
support the relevant file location and naming schemes. This presumes the pysat
developed utils.load_netCDF4 routine is able to load the file. See the load
routine docstring in this module for more.

The routines defined within may also be used when adding a new instrument
to pysat by importing this module and using the functools.partial methods
to attach these functions to the new instrument model. See
pysat/instruments/cnofs_ivm.py for more.
NASA CDAWeb datasets, such as C/NOFS IVM, use the methods within
pysat/instruments/methods/nasa_cdaweb.py to make adding new CDAWeb instruments
easy.

	
pysat.instruments.templates.netcdf_pandas.init(self)

	Initializes the Instrument object with instrument specific values.

Runs once upon instantiation. This routine provides a convenient
location to print Acknowledgements or restrictions from the mission.

	
pysat.instruments.templates.netcdf_pandas.load(fnames, tag=None, sat_id=None, **kwargs)

	Loads data using pysat.utils.load_netcdf4 .

This routine is called as needed by pysat. It is not intended
for direct user interaction.

	Parameters

	
	fnames (array-like) – iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.

	tag (string) – tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	sat_id (string) – Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	**kwargs (extra keywords) – Passthrough for additional keyword arguments specified when
instantiating an Instrument object. These additional keywords
are passed through to this routine by pysat.

	Returns

	Data and Metadata are formatted for pysat. Data is a pandas
DataFrame while metadata is a pysat.Meta instance.

	Return type

	data, metadata

Note

Any additional keyword arguments passed to pysat.Instrument
upon instantiation are passed along to this routine and through
to the load_netcdf4 call.

Examples

inst = pysat.Instrument('sport', 'ivm')
inst.load(2019,1)

create quick Instrument object for a new, random netCDF4 file
define filename template string to identify files
this is normally done by instrument code, but in this case
there is no built in pysat instrument support
presumes files are named default_2019-01-01.NC
format_str = 'default_{year:04d}-{month:02d}-{day:02d}.NC'
inst = pysat.Instrument('netcdf', 'pandas',
 custom_kwarg='test'
 data_path='./',
 format_str=format_str)
inst.load(2019,1)

	
pysat.instruments.templates.netcdf_pandas.list_files(tag=None, sat_id=None, data_path=None, format_str=None)

	Produce a list of files corresponding to format_str located at
data_path.

This routine is invoked by pysat and is not intended for direct use by
the end user.

Multiple data levels may be supported via the ‘tag’ and ‘sat_id’ input
strings.

	Parameters

	
	tag (string) – tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. (default=’’)

	sat_id (string) – Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. (default=’’)

	data_path (string) – Full path to directory containing files to be loaded. This
is provided by pysat. The user may specify their own data path
at Instrument instantiation and it will appear here. (default=None)

	format_str (string) – String template used to parse the datasets filenames. If a user
supplies a template string at Instrument instantiation
then it will appear here, otherwise defaults to None. (default=None)

	Returns

	Series of filename strings, including the path, indexed by datetime.

	Return type

	pandas.Series

Examples

If a filename is SPORT_L2_IVM_2019-01-01_v01r0000.NC then the template
is 'SPORT_L2_IVM_{year:04d}-{month:02d}-{day:02d}_' +
'v{version:02d}r{revision:04d}.NC'

Note

The returned Series should not have any duplicate datetimes. If there are
multiple versions of a file the most recent version should be kept and the
rest discarded. This routine uses the pysat.Files.from_os constructor, thus
the returned files are up to pysat specifications.

Normally the format_str for each supported tag and sat_id is defined within
this routine. However, as this is a generic routine, those definitions
can’t be made here. This method could be used in an instrument specific
module where the list_files routine in the new package defines the
format_str based upon inputs, then calls this routine passing both
data_path and format_str.

Alternately, the list_files routine in methods.nasa_cdaweb may also be
used and has more built in functionality. Supported tages and format
strings may be defined within the new instrument module and passed as
arguments to methods.nasa_cdaweb.list_files . For an example on using
this routine, see pysat/instrument/cnofs_ivm.py or cnofs_vefi, cnofs_plp,
omni_hro, timed_see, etc.

	
pysat.instruments.templates.netcdf_pandas.download(date_array, tag, sat_id, data_path=None, user=None, password=None)

	Downloads data for supported instruments, however this is a template
call.

This routine is invoked by pysat and is not intended for direct use by
the end user.

	Parameters

	
	date_array (array-like) – list of datetimes to download data for. The sequence of dates need not
be contiguous.

	tag (string) – Tag identifier used for particular dataset. This input is provided by
pysat. (default=’’)

	sat_id (string) – Satellite ID string identifier used for particular dataset. This input
is provided by pysat. (default=’’)

	data_path (string (None)) – Path to directory to download data to. (default=None)

	user (string) – User string input used for download. Provided by user and passed via
pysat. If an account is required for dowloads this routine here must
error if user not supplied. (default=None)

	password (string) – Password for data download. (default=None)

NASA CDAWeb Instrument

This is a template for a pysat.Instrument support file that
utilizes CDAWeb methods. Copy and modify this file as needed when adding a
new Instrument to pysat.

This is a good area to introduce the instrument, provide background
on the mission, operations, instrumenation, and measurements.

Also a good place to provide contact information. This text will
be included in the pysat API documentation.

Properties

	platform

	List platform string here

	name

	List name string here

	sat_id

	List supported sat_ids here

	tag

	List supported tag strings here

Note

	Optional section, remove if no notes

Warning

	Optional section, remove if no warnings

	Two blank lines needed afterward for proper formatting

Examples

Example code can go here

Authors

Author name and institution

	
pysat.instruments.templates.template_cdaweb_instrument.default(self)

	Default customization function.

This routine is automatically applied to the Instrument object
on every load by the pysat nanokernel (first in queue).

	Parameters

	self (pysat.Instrument) – This object

	
pysat.instruments.templates.template_cdaweb_instrument.load(fnames, tag=None, sat_id=None, fake_daily_files_from_monthly=False, flatten_twod=True)

	Load NASA CDAWeb CDF files.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatNASA.instruments.methods.cdaweb

This routine is intended to be used by pysat instrument modules supporting
a particular NASA CDAWeb dataset.

	Parameters

	
	fnames ((pandas.Series)) – Series of filenames

	tag ((str or NoneType)) – tag or None (default=None)

	sat_id ((str or NoneType)) – satellite id or None (default=None)

	fake_daily_files_from_monthly (bool) – Some CDAWeb instrument data files are stored by month, interfering
with pysat’s functionality of loading by day. This flag, when true,
parses of daily dates to monthly files that were added internally
by the list_files routine, when flagged. These dates are
used here to provide data by day.

	flatted_twod (bool) – Flattens 2D data into different columns of root DataFrame rather
than produce a Series of DataFrames

	Returns

	
	data ((pandas.DataFrame)) – Object containing satellite data

	meta ((pysat.Meta)) – Object containing metadata such as column names and units

Examples

within the new instrument module, at the top level define
a new variable named load, and set it equal to this load method
code below taken from cnofs_ivm.py.

support load routine
use the default CDAWeb method
load = cdw.load

	
pysat.instruments.templates.template_cdaweb_instrument.list_files(tag=None, sat_id=None, data_path=None, format_str=None, *, supported_tags={'': {'': 'cnofs_vefi_bfield_1sec_{year:04d}{month:02d}{day:02d}_v05.cdf'}}, fake_daily_files_from_monthly=False, two_digit_year_break=None)

	Return a Pandas Series of every file for chosen satellite data.

Deprecated since version 2.2.0: list_files will be removed in pysat 3.0.0, it will be replaced by the
copy in instruments.methods.general

This routine is intended to be used by pysat instrument modules supporting
a particular NASA CDAWeb dataset.

	Parameters

	
	tag ((string or NoneType)) – Denotes type of file to load. Accepted types are <tag strings>.
(default=None)

	sat_id ((string or NoneType)) – Specifies the satellite ID for a constellation. Not used.
(default=None)

	data_path ((string or NoneType)) – Path to data directory. If None is specified, the value previously
set in Instrument.files.data_path is used. (default=None)

	format_str ((string or NoneType)) – User specified file format. If None is specified, the default
formats associated with the supplied tags are used. (default=None)

	supported_tags ((dict or NoneType)) – keys are sat_id, each containing a dict keyed by tag
where the values file format template strings. (default=None)

	fake_daily_files_from_monthly ((bool)) – Some CDAWeb instrument data files are stored by month, interfering
with pysat’s functionality of loading by day. This flag, when true,
appends daily dates to monthly files internally. These dates are
used by load routine in this module to provide data by day.

	two_digit_year_break ((int)) – If filenames only store two digits for the year, then
‘1900’ will be added for years >= two_digit_year_break
and ‘2000’ will be added for years < two_digit_year_break.

	Returns

	pysat.Files.from_os – A class containing the verified available files

	Return type

	(pysat._files.Files)

Examples

fname = 'cnofs_vefi_bfield_1sec_{year:04d}{month:02d}{day:02d}_v05.cdf'
supported_tags = {'dc_b': fname}
list_files = functools.partial(nasa_cdaweb.list_files,
 supported_tags=supported_tags)

fname = 'cnofs_cindi_ivm_500ms_{year:4d}{month:02d}{day:02d}_v01.cdf'
supported_tags = {'': fname}
list_files = functools.partial(cdw.list_files,
 supported_tags=supported_tags)

	
pysat.instruments.templates.template_cdaweb_instrument.list_remote_files(tag, sat_id, remote_site='https://cdaweb.gsfc.nasa.gov', *, supported_tags={'': {'': {'dir': '/pub/data/cnofs/vefi/bfield_1sec', 'local_fname': 'cnofs_vefi_bfield_1sec_{year:04d}{month:02d}{day:02d}_v05.cdf', 'remote_fname': '{year:4d}/cnofs_vefi_bfield_1sec_{year:04d}{month:02d}{day:02d}_v05.cdf'}}}, user=None, password=None, fake_daily_files_from_monthly=False, two_digit_year_break=None, delimiter=None, year=None, month=None, day=None)

	Return a Pandas Series of every file for chosen remote data.

Deprecated since version 2.3.0: This routine will be removed in pysat 3.0.0, it will be moved to the
pysatNASA repository. Also, as of 2.2.0 the year/month/day keywords
will be removed in pysat 3.0.0, they will be replaced with a start/stop
syntax consistent with the download routine

This routine is intended to be used by pysat instrument modules supporting
a particular NASA CDAWeb dataset.

	Parameters

	
	tag ((string or NoneType)) – Denotes type of file to load. Accepted types are <tag strings>.
(default=None)

	sat_id ((string or NoneType)) – Specifies the satellite ID for a constellation.
(default=None)

	remote_site ((string or NoneType)) – Remote site to download data from
(default=’https://cdaweb.gsfc.nasa.gov’)

	supported_tags (dict) – dict of dicts. Keys are supported tag names for download. Value is
a dict with ‘dir’, ‘remote_fname’, ‘local_fname’. Inteded to be
pre-set with functools.partial then assigned to new instrument code.

	user ((string or NoneType)) – Username to be passed along to resource with relevant data.
(default=None)

	password ((string or NoneType)) – User password to be passed along to resource with relevant data.
(default=None)

	fake_daily_files_from_monthly (bool) – Some CDAWeb instrument data files are stored by month. This flag,
when true, accomodates this reality with user feedback on a monthly
time frame.
(default=False)

	two_digit_year_break ((int or NoneType)) – If filenames only store two digits for the year, then
‘1900’ will be added for years >= two_digit_year_break
and ‘2000’ will be added for years < two_digit_year_break.
(default=None)

	delimiter ((string or NoneType)) – If filename is delimited, then provide delimiter alone e.g. ‘_’
(default=None)

	year ((int or NoneType)) – Selects a given year to return remote files for. None returns all
years.
(default=None)

	month ((int or NoneType)) – Selects a given month to return remote files for. None returns all
months. Requires year to be defined.
(default=None)

	day ((int or NoneType)) – Selects a given day to return remote files for. None returns all
days. Requires year and month to be defined.
(default=None)

	Returns

	pysat.Files.from_os – A class containing the verified available files

	Return type

	(pysat._files.Files)

Examples

fname = 'cnofs_vefi_bfield_1sec_{year:04d}{month:02d}{day:02d}_v05.cdf'
supported_tags = {'dc_b': fname}
list_remote_files = functools.partial(nasa_cdaweb.list_remote_files,
 supported_tags=supported_tags)

fname = 'cnofs_cindi_ivm_500ms_{year:4d}{month:02d}{day:02d}_v01.cdf'
supported_tags = {'': fname}
list_remote_files = functools.partial(cdw.list_remote_files,
 supported_tags=supported_tags)

	
pysat.instruments.templates.template_cdaweb_instrument.download(date_array, tag, sat_id, remote_site='https://cdaweb.gsfc.nasa.gov', data_path=None, user=None, password=None, fake_daily_files_from_monthly=False, multi_file_day=False)

	Routine to download NASA CDAWeb CDF data.

Deprecated since version 2.3.0: This routine has been deprecated in pysat 3.0.0, and will be accessible
in pysatNASA.instruments.methods.cdaweb

This routine is intended to be used by pysat instrument modules supporting
a particular NASA CDAWeb dataset.

	Parameters

	
	supported_tags (dict) – dict of dicts. Keys are supported tag names for download. Value is
a dict with ‘dir’, ‘remote_fname’, ‘local_fname’. Inteded to be
pre-set with functools.partial then assigned to new instrument code.

	date_array (array_like) – Array of datetimes to download data for. Provided by pysat.

	tag (str or NoneType (None)) – tag or None

	sat_id ((str or NoneType)) – satellite id or None (default=None)

	remote_site ((string or NoneType)) – Remote site to download data from
(default=’https://cdaweb.gsfc.nasa.gov’)

	data_path ((string or NoneType)) – Path to data directory. If None is specified, the value previously
set in Instrument.files.data_path is used. (default=None)

	user ((string or NoneType)) – Username to be passed along to resource with relevant data.
(default=None)

	password ((string or NoneType)) – User password to be passed along to resource with relevant data.
(default=None)

	fake_daily_files_from_monthly (bool) – Some CDAWeb instrument data files are stored by month. This flag,
when true, accomodates this reality with user feedback on a monthly
time frame.

	Returns

	Void – Downloads data to disk.

	Return type

	(NoneType)

Examples

download support added to cnofs_vefi.py using code below
rn = '{year:4d}/cnofs_vefi_bfield_1sec_{year:4d}{month:02d}{day:02d}'+
 '_v05.cdf'
ln = 'cnofs_vefi_bfield_1sec_{year:4d}{month:02d}{day:02d}_v05.cdf'
dc_b_tag = {'dir':'/pub/data/cnofs/vefi/bfield_1sec',
 'remote_fname': rn,
 'local_fname': ln}
supported_tags = {'dc_b': dc_b_tag}

download = functools.partial(nasa_cdaweb.download,
 supported_tags=supported_tags)

	
pysat.instruments.templates.template_cdaweb_instrument.clean(inst)

	Routine to return PLATFORM/NAME data cleaned to the specified level

Cleaning level is specified in inst.clean_level and pysat
will accept user input for several strings. The clean_level is
specified at instantiation of the Instrument object.

‘clean’ : All parameters should be good, suitable for statistical and case studies
‘dusty’ : All paramers should generally be good though same may not be great
‘dirty’ : There are data areas that have issues, data should be used with caution
‘none’ : No cleaning applied, routine not called in this case.

	Parameters

	inst (pysat.Instrument) – Instrument class object, whose attribute clean_level is used to return
the desired level of data selectivity.

netCDF Pandas

Generic module for loading netCDF4 files into the pandas format within pysat.

This file may be used as a template for adding pysat support for a new dataset
based upon netCDF4 files, or other file types (with modification).

This routine may also be used to add quick local support for a netCDF4 based
dataset without having to define an instrument module for pysat. Relevant
parameters may be specified when instantiating this Instrument object to
support the relevant file location and naming schemes. This presumes the pysat
developed utils.load_netCDF4 routine is able to load the file. See the load
routine docstring in this module for more.

The routines defined within may also be used when adding a new instrument
to pysat by importing this module and using the functools.partial methods
to attach these functions to the new instrument model. See
pysat/instruments/cnofs_ivm.py for more.
NASA CDAWeb datasets, such as C/NOFS IVM, use the methods within
pysat/instruments/methods/nasa_cdaweb.py to make adding new CDAWeb instruments
easy.

	
pysat.instruments.templates.netcdf_pandas.init(self)

	Initializes the Instrument object with instrument specific values.

Runs once upon instantiation. This routine provides a convenient
location to print Acknowledgements or restrictions from the mission.

	
pysat.instruments.templates.netcdf_pandas.load(fnames, tag=None, sat_id=None, **kwargs)

	Loads data using pysat.utils.load_netcdf4 .

This routine is called as needed by pysat. It is not intended
for direct user interaction.

	Parameters

	
	fnames (array-like) – iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.

	tag (string) – tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	sat_id (string) – Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.

	**kwargs (extra keywords) – Passthrough for additional keyword arguments specified when
instantiating an Instrument object. These additional keywords
are passed through to this routine by pysat.

	Returns

	Data and Metadata are formatted for pysat. Data is a pandas
DataFrame while metadata is a pysat.Meta instance.

	Return type

	data, metadata

Note

Any additional keyword arguments passed to pysat.Instrument
upon instantiation are passed along to this routine and through
to the load_netcdf4 call.

Examples

inst = pysat.Instrument('sport', 'ivm')
inst.load(2019,1)

create quick Instrument object for a new, random netCDF4 file
define filename template string to identify files
this is normally done by instrument code, but in this case
there is no built in pysat instrument support
presumes files are named default_2019-01-01.NC
format_str = 'default_{year:04d}-{month:02d}-{day:02d}.NC'
inst = pysat.Instrument('netcdf', 'pandas',
 custom_kwarg='test'
 data_path='./',
 format_str=format_str)
inst.load(2019,1)

	
pysat.instruments.templates.netcdf_pandas.list_files(tag=None, sat_id=None, data_path=None, format_str=None)

	Produce a list of files corresponding to format_str located at
data_path.

This routine is invoked by pysat and is not intended for direct use by
the end user.

Multiple data levels may be supported via the ‘tag’ and ‘sat_id’ input
strings.

	Parameters

	
	tag (string) – tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. (default=’’)

	sat_id (string) – Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself. (default=’’)

	data_path (string) – Full path to directory containing files to be loaded. This
is provided by pysat. The user may specify their own data path
at Instrument instantiation and it will appear here. (default=None)

	format_str (string) – String template used to parse the datasets filenames. If a user
supplies a template string at Instrument instantiation
then it will appear here, otherwise defaults to None. (default=None)

	Returns

	Series of filename strings, including the path, indexed by datetime.

	Return type

	pandas.Series

Examples

If a filename is SPORT_L2_IVM_2019-01-01_v01r0000.NC then the template
is 'SPORT_L2_IVM_{year:04d}-{month:02d}-{day:02d}_' +
'v{version:02d}r{revision:04d}.NC'

Note

The returned Series should not have any duplicate datetimes. If there are
multiple versions of a file the most recent version should be kept and the
rest discarded. This routine uses the pysat.Files.from_os constructor, thus
the returned files are up to pysat specifications.

Normally the format_str for each supported tag and sat_id is defined within
this routine. However, as this is a generic routine, those definitions
can’t be made here. This method could be used in an instrument specific
module where the list_files routine in the new package defines the
format_str based upon inputs, then calls this routine passing both
data_path and format_str.

Alternately, the list_files routine in methods.nasa_cdaweb may also be
used and has more built in functionality. Supported tages and format
strings may be defined within the new instrument module and passed as
arguments to methods.nasa_cdaweb.list_files . For an example on using
this routine, see pysat/instrument/cnofs_ivm.py or cnofs_vefi, cnofs_plp,
omni_hro, timed_see, etc.

	
pysat.instruments.templates.netcdf_pandas.download(date_array, tag, sat_id, data_path=None, user=None, password=None)

	Downloads data for supported instruments, however this is a template
call.

This routine is invoked by pysat and is not intended for direct use by
the end user.

	Parameters

	
	date_array (array-like) – list of datetimes to download data for. The sequence of dates need not
be contiguous.

	tag (string) – Tag identifier used for particular dataset. This input is provided by
pysat. (default=’’)

	sat_id (string) – Satellite ID string identifier used for particular dataset. This input
is provided by pysat. (default=’’)

	data_path (string (None)) – Path to directory to download data to. (default=None)

	user (string) – User string input used for download. Provided by user and passed via
pysat. If an account is required for dowloads this routine here must
error if user not supplied. (default=None)

	password (string) – Password for data download. (default=None)

Constellation

	
class pysat.Constellation(instruments=None, name=None, const_module=None)

	Manage and analyze data from multiple pysat Instruments.

Created as part of a Spring 2018 UTDesign project.

Deprecated since version 2.3.0: The name kwarg was changed to const_module in pysat 3.0.0

Constructs a Constellation given a list of instruments or the name of
a file with a pre-defined constellation.

Deprecated since version 2.3.0: The name kwarg was changed to const_module in pysat 3.0.0

	Parameters

	
	instruments (list) – a list of pysat Instruments

	name (string) – Name of a file in pysat/constellations containing a list of
instruments.

	const_module (string or NoneType) – Name of a pysat constellation module (default=None)

Note

The name and instruments parameters should not both be set.
If neither is given, an empty constellation will be created.

	
add(bounds1, label1, bounds2, label2, bin3, label3, data_label)

	Combines signals from multiple instruments within
given bounds.

Deprecated since version 2.2.0: add will be removed in pysat 3.0.0, it will be added to pysatSeasons

	Parameters

	
	bounds1 ((min, max)) – Bounds for selecting data on the axis of label1
Data points with label1 in [min, max) will be considered.

	label1 (string) – Data label for bounds1 to act on.

	bounds2 ((min, max)) – Bounds for selecting data on the axis of label2
Data points with label1 in [min, max) will be considered.

	label2 (string) – Data label for bounds2 to act on.

	bin3 ((min, max, #bins)) – Min and max bounds and number of bins for third axis.

	label3 (string) – Data label for third axis.

	data_label (array of strings) – Data label(s) for data product(s) to be averaged.

	Returns

	median – Dictionary indexed by data label, each value of which is a
dictionary with keys ‘median’, ‘count’, ‘avg_abs_dev’, and
‘bin’ (the values of the bin edges.)

	Return type

	dictionary

	
data_mod(*args, **kwargs)

	Register a function to modify data of member Instruments.

The function is not partially applied to modify member data.

When the Constellation receives a function call to register
a function for data modification, it passes the call to each
instrument and registers it in the instrument’s pysat.Custom queue.

(Wraps pysat.Custom.add; documentation of that function is
reproduced here.)

	Parameters

	
	function (string or function object) – name of function or function object to be added to queue

	kind ({'add, 'modify', 'pass'}) –
	add

	Adds data returned from fuction to instrument object.

	modify

	pysat instrument object supplied to routine. Any and all
changes to object are retained.

	pass

	A copy of pysat object is passed to function. No
data is accepted from return.

	at_pos (string or int) – insert at position. (default, insert at end).

	args (extra arguments) –

Note

Allowed add function returns:

	{‘data’ : pandas Series/DataFrame/array_like,
‘units’ : string/array_like of strings,
‘long_name’ : string/array_like of strings,
‘name’ : string/array_like of strings (iff data array_like)}

	pandas DataFrame, names of columns are used

	pandas Series, .name required

	(string/list of strings, numpy array/list of arrays)

	
difference(instrument1, instrument2, bounds, data_labels, cost_function)

	Calculates the difference in signals from multiple
instruments within the given bounds.

Deprecated since version 2.2.0: difference will be removed in pysat 3.0.0, it will be added to
pysatSeasons

	Parameters

	
	instrument1 (Instrument) – Information must already be loaded into the
instrument.

	instrument2 (Instrument) – Information must already be loaded into the
instrument.

	bounds (list of tuples in the form (inst1_label, inst2_label,) – min, max, max_difference)
inst1_label are inst2_label are labels for the data in
instrument1 and instrument2
min and max are bounds on the data considered
max_difference is the maximum difference between two points
for the difference to be calculated

	data_labels (list of tuples of data labels) – The first key is used to access data in s1
and the second data in s2.

	cost_function (function) – function that operates on two rows of the instrument data.
used to determine the distance between two points for finding
closest points

	Returns

	
	data_df (pandas DataFrame) – Each row has a point from instrument1, with the keys
preceded by 1_, and a point within bounds on that point
from instrument2 with the keys preceded by 2_, and the
difference between the instruments’ data for all the labels
in data_labels

	Created as part of a Spring 2018 UTDesign project.

	
load(*args, **kwargs)

	Load instrument data into instrument object.data

(Wraps pysat.Instrument.load; documentation of that function is
reproduced here.)

	Parameters

	
	yr (integer) – Year for desired data

	doy (integer) – day of year

	data (datetime object) – date to load

	fname ('string') – filename to be loaded

	verifyPad (boolean) – if true, padding data not removed (debug purposes)

	
set_bounds(start, stop)

	Sets boundaries for all instruments in constellation

Custom

	
class pysat.Custom

	Applies a queue of functions when instrument.load called.

Deprecated since version 2.3.0: Custom will be removed in pysat 3.0.0, it is incorporated into
Instrument

Nano-kernel functionality enables instrument objects that are
‘set and forget’. The functions are always run whenever
the instrument load routine is called so instrument objects may
be passed safely to other routines and the data will always
be processed appropriately.

Examples

def custom_func(inst, opt_param1=False, opt_param2=False):
 return None
instrument.custom.attach(custom_func, 'modify', opt_param1=True)

def custom_func2(inst, opt_param1=False, opt_param2=False):
 return data_to_be_added
instrument.custom.attach(custom_func2, 'add', opt_param2=True)
instrument.load(date=date)
print(instrument['data_to_be_added'])

See also

Custom.attach

Note

User should interact with Custom through pysat.Instrument instance’s
attribute, instrument.custom

	
add(function, kind='add', at_pos='end', *args, **kwargs)

	Add a function to custom processing queue.

Deprecated since version 2.2.0: Custom.add will be removed in pysat 3.0.0, it is replaced by
Instrument.custom_attach to clarify the syntax

Custom functions are applied automatically to associated
pysat instrument whenever instrument.load command called.

	Parameters

	
	function (string or function object) – name of function or function object to be added to queue

	kind ({'add', 'modify', 'pass}) –
	add

	Adds data returned from function to instrument object.
A copy of pysat instrument object supplied to routine.

	modify

	pysat instrument object supplied to routine. Any and all
changes to object are retained.

	pass

	A copy of pysat object is passed to function. No
data is accepted from return.

	at_pos (string or int) – insert at position. (default, insert at end).

	args (extra arguments) – extra arguments are passed to the custom function (once)

	kwargs (extra keyword arguments) – extra keyword args are passed to the custom function (once)

Note

Allowed add function returns:

	{‘data’ : pandas Series/DataFrame/array_like,
‘units’ : string/array_like of strings,
‘long_name’ : string/array_like of strings,
‘name’ : string/array_like of strings (iff data array_like)}

	pandas DataFrame, names of columns are used

	pandas Series, .name required

	(string/list of strings, numpy array/list of arrays)

	
attach(function, kind='add', at_pos='end', *args, **kwargs)

	Attach a function to custom processing queue.

Deprecated since version 2.3.0: Custom.attach will be removed in pysat 3.0.0, it is replaced by
Instrument.custom_attach

Custom functions are applied automatically to associated
pysat instrument whenever instrument.load command called.

	Parameters

	
	function (string or function object) – name of function or function object to be added to queue

	kind ({'add', 'modify', 'pass}) –
	add

	Adds data returned from function to instrument object.
A copy of pysat instrument object supplied to routine.

	modify

	pysat instrument object supplied to routine. Any and all
changes to object are retained.

	pass

	A copy of pysat object is passed to function. No
data is accepted from return.

	at_pos (string or int) – insert at position. (default, insert at end).

	args (extra arguments) – extra arguments are passed to the custom function (once)

	kwargs (extra keyword arguments) – extra keyword args are passed to the custom function (once)

Note

Allowed attach function returns:

	{‘data’ : pandas Series/DataFrame/array_like,
‘units’ : string/array_like of strings,
‘long_name’ : string/array_like of strings,
‘name’ : string/array_like of strings (iff data array_like)}

	pandas DataFrame, names of columns are used

	pandas Series, .name required

	(string/list of strings, numpy array/list of arrays)

	
clear()

	Clear custom function list.

Deprecated since version 2.3.0: Custom.clear will be removed in pysat 3.0.0, it is replaced by
Instrument.custom_clear

Files

	
class pysat.Files(sat, manual_org=False, directory_format=None, update_files=False, file_format=None, write_to_disk=True, ignore_empty_files=False)

	Maintains collection of files for instrument object.

Uses the list_files functions for each specific instrument
to create an ordered collection of files in time. Used by
instrument object to load the correct files. Files also
contains helper methods for determining the presence of
new files and creating an ordered list of files.

	
base_path

	path to .pysat directory in user home

	Type

	string

	
start_date

	date of first file, used as default start bound for instrument
object

	Type

	datetime

	
stop_date

	date of last file, used as default stop bound for instrument
object

	Type

	datetime

	
data_path

	path to the directory containing instrument files,
top_dir/platform/name/tag/

	Type

	string

	
manual_org

	if True, then Files will look directly in pysat data directory
for data files and will not use /platform/name/tag

	Type

	bool

	
update_files

	updates files on instantiation if True

	Type

	bool

Note

User should generally use the interface provided by a pysat.Instrument
instance. Exceptions are the classmethod from_os, provided to assist
in generating the appropriate output for an instrument routine.

Examples

convenient file access
inst = pysat.Instrument(platform=platform, name=name, tag=tag,
 sat_id=sat_id)
first file
inst.files[0]

files from start up to stop (exclusive on stop)
start = pysat.datetime(2009,1,1)
stop = pysat.datetime(2009,1,3)
print(vefi.files[start:stop])

files for date
print(vefi.files[start])

files by slicing
print(vefi.files[0:4])

get a list of new files
new files are those that weren't present the last time
a given instrument's file list was stored
new_files = vefi.files.get_new()

search pysat appropriate directory for instrument files and
update Files instance.
vefi.files.refresh()

Initialization for Files class object

	Parameters

	
	sat (pysat._instrument.Instrument) – Instrument object

	manual_org (boolian) – If True, then pysat will look directly in pysat data directory
for data files and will not use default /platform/name/tag
(default=False)

	directory_format (string or NoneType) – directory naming structure in string format. Variables such as
platform, name, and tag will be filled in as needed using python
string formatting. The default directory structure would be
expressed as ‘{platform}/{name}/{tag}’ (default=None)

	update_files (boolean) – If True, immediately query filesystem for instrument files and
store
(default=False)

	file_format (str or NoneType) – File naming structure in string format. Variables such as year,
month, and sat_id will be filled in as needed using python string
formatting. The default file format structure is supplied in the
instrument list_files routine. (default=None)

	write_to_disk (boolean) – If true, the list of Instrument files will be written to disk.
Setting this to False prevents a rare condition when running
multiple pysat processes.

	ignore_empty_files (boolean) – if True, the list of files found will be checked to
ensure the filesiizes are greater than zero. Empty files are
removed from the stored list of files.

	
classmethod from_os(data_path=None, format_str=None, two_digit_year_break=None, delimiter=None)

	Produces a list of files and and formats it for Files class.

Requires fixed_width or delimited filename

	Parameters

	
	data_path (string) – Top level directory to search files for. This directory
is provided by pysat to the instrument_module.list_files
functions as data_path.

	format_str (string with python format codes) – Provides the naming pattern of the instrument files and the
locations of date information so an ordered list may be produced.
Supports ‘year’, ‘month’, ‘day’, ‘hour’, ‘minute’, ‘second’,
‘version’, and ‘revision’
Ex: ‘cnofs_cindi_ivm_500ms_{year:4d}{month:02d}{day:02d}_v01.cdf’

	two_digit_year_break (int) – If filenames only store two digits for the year, then
‘1900’ will be added for years >= two_digit_year_break
and ‘2000’ will be added for years < two_digit_year_break.

	delimiter (string (None)) – If set, then filename will be processed using delimiter rather
than assuming a fixed width

Note

Does not produce a Files instance, but the proper output
from instrument_module.list_files method.

The ‘?’ may be used to indicate a set number of spaces for a variable
part of the name that need not be extracted.
‘cnofs_cindi_ivm_500ms_{year:4d}{month:02d}{day:02d}_v??.cdf’

	
get_file_array(start, end)

	Return a list of filenames between and including start and end.

	Parameters

	
	start (array_like or single string) – filenames for start of returned filelist

	stop (array_like or single string) – filenames inclusive end of list

	Returns

	
	list of filenames between and including start and end over all

	intervals.

	
get_index(fname)

	Return index for a given filename.

	Parameters

	fname (string) – filename

Note

If fname not found in the file information already attached
to the instrument.files instance, then a files.refresh() call
is made.

	
get_new()

	List new files since last recorded file state.

pysat stores filenames in the user_home/.pysat directory. Returns
a list of all new fileanmes since the last known change to files.
Filenames are stored if there is a change and either update_files
is True at instrument object level or files.refresh() is called.

	Returns

	files are indexed by datetime

	Return type

	pandas.Series

	
refresh()

	Update list of files, if there are changes.

Calls underlying list_rtn for the particular science instrument.
Typically, these routines search in the pysat provided path,
pysat_data_dir/platform/name/tag/,
where pysat_data_dir is set by pysat.utils.set_data_dir(path=path).

Meta

	
class pysat.Meta(metadata=None, units_label='units', name_label='long_name', notes_label='notes', desc_label='desc', plot_label='label', axis_label='axis', scale_label='scale', min_label='value_min', max_label='value_max', fill_label='fill', export_nan=[])

	Stores metadata for Instrument instance, similar to CF-1.6 netCDFdata
standard.

	Parameters

	
	metadata (pandas.DataFrame) – DataFrame should be indexed by variable name that contains at minimum
the standard_name (name), units, and long_name for the data stored in
the associated pysat Instrument object.

	units_label (str) – String used to label units in storage. Defaults to ‘units’.

	name_label (str) – String used to label long_name in storage. Defaults to ‘long_name’.

	notes_label (str) – String used to label ‘notes’ in storage. Defaults to ‘notes’

	desc_label (str) – String used to label variable descriptions in storage.
Defaults to ‘desc’

	plot_label (str) – String used to label variables in plots. Defaults to ‘label’

	axis_label (str) – Label used for axis on a plot. Defaults to ‘axis’

	scale_label (str) – string used to label plot scaling type in storage. Defaults to ‘scale’

	min_label (str) – String used to label typical variable value min limit in storage.
Defaults to ‘value_min’

	max_label (str) – String used to label typical variable value max limit in storage.
Defaults to ‘value_max’

	fill_label (str) – String used to label fill value in storage. Defaults to ‘fill’ per
netCDF4 standard

	
data

	index is variable standard name, ‘units’, ‘long_name’, and other
defaults are also stored along with additional user provided labels.

	Type

	pandas.DataFrame

	
units_label

	String used to label units in storage. Defaults to ‘units’.

	Type

	str

	
name_label

	String used to label long_name in storage. Defaults to ‘long_name’.

	Type

	str

	
notes_label

	String used to label ‘notes’ in storage. Defaults to ‘notes’

	Type

	str

	
desc_label

	String used to label variable descriptions in storage.
Defaults to ‘desc’

	Type

	str

	
plot_label

	String used to label variables in plots. Defaults to ‘label’

	Type

	str

	
axis_label

	Label used for axis on a plot. Defaults to ‘axis’

	Type

	str

	
scale_label

	string used to label plot scaling type in storage. Defaults to ‘scale’

	Type

	str

	
min_label

	String used to label typical variable value min limit in storage.
Defaults to ‘value_min’

	Type

	str

	
max_label

	String used to label typical variable value max limit in storage.
Defaults to ‘value_max’

	Type

	str

	
fill_label

	String used to label fill value in storage. Defaults to ‘fill’ per
netCDF4 standard

	Type

	str

	
export_nan

	List of labels that should be exported even if their value is nan.
By default, metadata with a value of nan will be exluded from export.

	Type

	list

Notes

Meta object preserves the case of variables and attributes as it first
receives the data. Subsequent calls to set new metadata with the same
variable or attribute will use case of first call. Accessing or setting
data thereafter is case insensitive. In practice, use is case insensitive
but the original case is preserved. Case preseveration is built in to
support writing files with a desired case to meet standards.

Metadata for higher order data objects, those that have
multiple products under a single variable name in a pysat.Instrument
object, are stored by providing a Meta object under the single name.

Supports any custom metadata values in addition to the expected metadata
attributes (units, name, notes, desc, plot_label, axis, scale, value_min,
value_max, and fill). These base attributes may be used to programatically
access and set types of metadata regardless of the string values used for
the attribute. String values for attributes may need to be changed
depending upon the standards of code or files interacting with pysat.

Meta objects returned as part of pysat loading routines are automatically
updated to use the same values of plot_label, units_label, etc. as found
on the pysat.Instrument object.

Examples

instantiate Meta object, default values for attribute labels are used
meta = pysat.Meta()
set a couple base units
note that other base parameters not set below will
be assigned a default value
meta['name'] = {'long_name':string, 'units':string}
update 'units' to new value
meta['name'] = {'units':string}
update 'long_name' to new value
meta['name'] = {'long_name':string}
attach new info with partial information, 'long_name' set to 'name2'
meta['name2'] = {'units':string}
units are set to '' by default
meta['name3'] = {'long_name':string}

assigning custom meta parameters
meta['name4'] = {'units':string, 'long_name':string
 'custom1':string, 'custom2':value}
meta['name5'] = {'custom1':string, 'custom3':value}

assign multiple variables at once
meta[['name1', 'name2']] = {'long_name':[string1, string2],
 'units':[string1, string2],
 'custom10':[string1, string2]}

assiging metadata for n-Dimensional variables
meta2 = pysat.Meta()
meta2['name41'] = {'long_name':string, 'units':string}
meta2['name42'] = {'long_name':string, 'units':string}
meta['name4'] = {'meta':meta2}
or
meta['name4'] = meta2
meta['name4'].children['name41']

mixture of 1D and higher dimensional data
meta = pysat.Meta()
meta['dm'] = {'units':'hey', 'long_name':'boo'}
meta['rpa'] = {'units':'crazy', 'long_name':'boo_whoo'}
meta2 = pysat.Meta()
meta2[['higher', 'lower']] = {'meta':[meta, None],
 'units':[None, 'boo'],
 'long_name':[None, 'boohoo']}

assign from another Meta object
meta[key1] = meta2[key2]

access fill info for a variable, presuming default label
meta[key1, 'fill']
access same info, even if 'fill' not used to label fill values
meta[key1, meta.fill_label]

change a label used by Meta object
note that all instances of fill_label
within the meta object are updated
meta.fill_label = '_FillValue'
meta.plot_label = 'Special Plot Variable'
this feature is useful when converting metadata within pysat
so that it is consistent with externally imposed file standards

	
accept_default_labels(other)

	Applies labels for default meta labels from other onto self.

	Parameters

	other (Meta) – Meta object to take default labels from

	Returns

	

	Return type

	Meta

	
apply_default_labels(other)

	Applies labels for default meta labels from self onto other.

	Parameters

	other (Meta) – Meta object to have default labels applied

	Returns

	

	Return type

	Meta

	
attr_case_name(name)

	Returns preserved case name for case insensitive value of name.

Checks first within standard attributes. If not found there, checks
attributes for higher order data structures. If not found, returns
supplied name as it is available for use. Intended to be used to help
ensure that the same case is applied to all repetitions of a given
variable name.

	Parameters

	name (str) – name of variable to get stored case form

	Returns

	name in proper case

	Return type

	str

	
attrs()

	Yields metadata products stored for each variable name

	
concat(other, strict=False)

	Concats two metadata objects together.

	Parameters

	
	other (Meta) – Meta object to be concatenated

	strict (bool) – if True, ensure there are no duplicate variable names

Notes

Uses units and name label of self if other is different

	Returns

	Concatenated object

	Return type

	Meta

	
drop(names)

	Drops variables (names) from metadata.

	
empty

	Return boolean True if there is no metadata

	
classmethod from_csv(name=None, col_names=None, sep=None, **kwargs)

	Create instrument metadata object from csv.

	Parameters

	
	name (string) – absolute filename for csv file or name of file
stored in pandas instruments location

	col_names (list-like collection of strings) – column names in csv and resultant meta object

	sep (string) – column seperator for supplied csv filename

Note

column names must include at least [‘name’, ‘long_name’, ‘units’],
assumed if col_names is None.

	
has_attr(name)

	Returns boolean indicating presence of given attribute name

Case-insensitive check

Notes

Does not check higher order meta objects

	Parameters

	name (str) – name of variable to get stored case form

	Returns

	True if case-insesitive check for attribute name is True

	Return type

	bool

	
keep(keep_names)

	Keeps variables (keep_names) while dropping other parameters

	Parameters

	keep_names (list-like) – variables to keep

	
keys()

	Yields variable names stored for 1D variables

	
keys_nD()

	Yields keys for higher order metadata

	
merge(other)

	Adds metadata variables to self that are in other but not in self.

	Parameters

	other (pysat.Meta) –

	
pop(name)

	Remove and return metadata about variable

	Parameters

	name (str) – variable name

	Returns

	Series of metadata for variable

	Return type

	pandas.Series

	
transfer_attributes_to_instrument(inst, strict_names=False)

	Transfer non-standard attributes in Meta to Instrument object.

Pysat’s load_netCDF and similar routines are only able to attach
netCDF4 attributes to a Meta object. This routine identifies these
attributes and removes them from the Meta object. Intent is to
support simple transfers to the pysat.Instrument object.

Will not transfer names that conflict with pysat default attributes.

	Parameters

	
	inst (pysat.Instrument) – Instrument object to transfer attributes to

	strict_names (boolean (False)) – If True, produces an error if the Instrument object already
has an attribute with the same name to be copied.

	Returns

	pysat.Instrument object modified in place with new attributes

	Return type

	None

	
var_case_name(name)

	Provides stored name (case preserved) for case insensitive input

If name is not found (case-insensitive check) then name is returned,
as input. This function is intended to be used to help ensure the
case of a given variable name is the same across the Meta object.

	Parameters

	name (str) – variable name in any case

	Returns

	string with case preserved as in metaobject

	Return type

	str

Orbits

	
class pysat.Orbits(sat=None, index=None, kind=None, period=None)

	Determines orbits on the fly and provides orbital data in .data.

Determines the locations of orbit breaks in the loaded data in inst.data
and provides iteration tools and convenient orbit selection via
inst.orbit[orbit num].

	Parameters

	
	sat (pysat.Instrument instance) – instrument object to determine orbits for

	index (string) – name of the data series to use for determing orbit breaks

	kind ({'local time', 'longitude', 'polar', 'orbit'}) – kind of orbit, determines how orbital breaks are determined

	local time: negative gradients in lt or breaks in inst.data.index

	longitude: negative gradients or breaks in inst.data.index

	polar: zero crossings in latitude or breaks in inst.data.index

	orbit: uses unique values of orbit number

	period (np.timedelta64) – length of time for orbital period, used to gauge when a break
in the datetime index (inst.data.index) is large enough to
consider it a new orbit

Note

class should not be called directly by the user, use the interface provided
by inst.orbits where inst = pysat.Instrument()

Warning

This class is still under development.

Examples

info = {'index':'longitude', 'kind':'longitude'}
vefi = pysat.Instrument(platform='cnofs', name='vefi', tag='dc_b',
 clean_level=None, orbit_info=info)
start = pysat.datetime(2009,1,1)
stop = pysat.datetime(2009,1,10)
vefi.load(date=start)
vefi.bounds(start, stop)

iterate over orbits
for vefi in vefi.orbits:
 print('Next available orbit ', vefi['dB_mer'])

load fifth orbit of first day
vefi.load(date=start)
vefi.orbits[5]

less convenient load
vefi.orbits.load(5)

manually iterate orbit
vefi.orbits.next()
backwards
vefi.orbits.prev()

	
current

	Current orbit number.

	Returns

	None if no orbit data. Otherwise, returns orbit number, begining
with zero. The first and last orbit of a day is somewhat ambiguous.
The first orbit for day n is generally also the last orbit
on day n - 1. When iterating forward, the orbit will be labeled
as first (0). When iterating backward, orbit labeled as the last.

	Return type

	int or None

	
load(orbit=None)

	Load a particular orbit into .data for loaded day.

	Parameters

	orbit (int) – orbit number, 1 indexed

Note

A day of data must be loaded before this routine functions properly.
If the last orbit of the day is requested, it will automatically be
padded with data from the next day. The orbit counter will be
reset to 1.

	
next(*arg, **kwarg)

	Load the next orbit into .data.

Note

Forms complete orbits across day boundaries. If no data loaded
then the first orbit from the first date of data is returned.

	
prev(*arg, **kwarg)

	Load the previous orbit into .data.

Note

Forms complete orbits across day boundaries. If no data loaded
then the last orbit of data from the last day is loaded into .data.

Seasonal Analysis

Occurrence Probability

Occurrence probability routines, daily or by orbit.

Routines calculate the occurrence of an event greater than a supplied gate
occuring at least once per day, or once per orbit. The probability is
calculated as the (number of times with at least one hit in bin)/(number
of times in the bin).The data used to determine the occurrence must be 1D.
If a property of a 2D or higher dataset is needed attach a custom function
that performs the check and returns a 1D Series.

Deprecated since version 2.2.0: ssnl.occur_prob will be removed in pysat 3.0.0, it will be added to
pysatSeasons: https://github.com/pysat/pysatSeasons

Note

The included routines use the bounds attached to the supplied instrument
object as the season of interest.

	
pysat.ssnl.occur_prob.by_orbit2D(inst, bin1, label1, bin2, label2, data_label, gate, returnBins=False)

	2D Occurrence Probability of data_label orbit-by-orbit over a season.

Deprecated since version 2.2.0: by_orbit2D will be removed in pysat 3.0.0, it will
be added to pysatSeasons

If data_label is greater than gate atleast once per orbit, then a
100% occurrence probability results. Season delineated by the bounds
attached to Instrument object.
Prob = (# of times with at least one hit)/(# of times in bin)

	Parameters

	
	inst (pysat.Instrument()) – Instrument to use for calculating occurrence probability

	binx (list) – [min value, max value, number of bins]

	labelx (string) – identifies data product for binx

	data_label (list of strings) – identifies data product(s) to calculate occurrence probability

	gate (list of values) – values that data_label must achieve to be counted as an occurrence

	returnBins (Boolean) – if True, return arrays with values of bin edges, useful for pcolor

	Returns

	occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries
‘prob’ for the probability and ‘count’ for the number of orbits with
any data; ‘bin_x’ and ‘bin_y’ are also returned if requested. Note that
arrays are organized for direct plotting, y values along rows, x along
columns.

	Return type

	dictionary

Note

Season delineated by the bounds attached to Instrument object.

	
pysat.ssnl.occur_prob.by_orbit3D(inst, bin1, label1, bin2, label2, bin3, label3, data_label, gate, returnBins=False)

	3D Occurrence Probability of data_label orbit-by-orbit over a season.

Deprecated since version 2.2.0: by_orbit3D will be removed in pysat 3.0.0, it will
be added to pysatSeasons

If data_label is greater than gate atleast once per orbit, then a
100% occurrence probability results. Season delineated by the bounds
attached to Instrument object.
Prob = (# of times with at least one hit)/(# of times in bin)

	Parameters

	
	inst (pysat.Instrument()) – Instrument to use for calculating occurrence probability

	binx (list) – [min value, max value, number of bins]

	labelx (string) – identifies data product for binx

	data_label (list of strings) – identifies data product(s) to calculate occurrence probability

	gate (list of values) – values that data_label must achieve to be counted as an occurrence

	returnBins (Boolean) – if True, return arrays with values of bin edges, useful for pcolor

	Returns

	occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries
‘prob’ for the probability and ‘count’ for the number of orbits with
any data; ‘bin_x’, ‘bin_y’, and ‘bin_z’ are also returned if requested.
Note that arrays are organized for direct plotting, z,y,x.

	Return type

	dictionary

Note

Season delineated by the bounds attached to Instrument object.

	
pysat.ssnl.occur_prob.daily2D(inst, bin1, label1, bin2, label2, data_label, gate, returnBins=False)

	2D Daily Occurrence Probability of data_label > gate over a season.

Deprecated since version 2.2.0: daily2D will be removed in pysat 3.0.0, it will
be added to pysatSeasons

If data_label is greater than gate at least once per day,
then a 100% occurrence probability results.Season delineated by the bounds
attached to Instrument object.
Prob = (# of times with at least one hit)/(# of times in bin)

	Parameters

	
	inst (pysat.Instrument()) – Instrument to use for calculating occurrence probability

	binx (list) – [min, max, number of bins]

	labelx (string) – name for data product for binx

	data_label (list of strings) – identifies data product(s) to calculate occurrence probability
e.g. inst[data_label]

	gate (list of values) – values that data_label must achieve to be counted as an occurrence

	returnBins (Boolean) – if True, return arrays with values of bin edges, useful for pcolor

	Returns

	occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries
‘prob’ for the probability and ‘count’ for the number of days with any
data; ‘bin_x’ and ‘bin_y’ are also returned if requested. Note that
arrays are organized for direct plotting, y values along rows, x along
columns.

	Return type

	dictionary

Note

Season delineated by the bounds attached to Instrument object.

	
pysat.ssnl.occur_prob.daily3D(inst, bin1, label1, bin2, label2, bin3, label3, data_label, gate, returnBins=False)

	3D Daily Occurrence Probability of data_label > gate over a season.

Deprecated since version 2.2.0: daily3D will be removed in pysat 3.0.0, it will
be added to pysatSeasons

If data_label is greater than gate atleast once per day,
then a 100% occurrence probability results. Season delineated by
the bounds attached to Instrument object.
Prob = (# of times with at least one hit)/(# of times in bin)

	Parameters

	
	inst (pysat.Instrument()) – Instrument to use for calculating occurrence probability

	binx (list) – [min, max, number of bins]

	labelx (string) – name for data product for binx

	data_label (list of strings) – identifies data product(s) to calculate occurrence probability

	gate (list of values) – values that data_label must achieve to be counted as an occurrence

	returnBins (Boolean) – if True, return arrays with values of bin edges, useful for pcolor

	Returns

	occur_prob – A dict of dicts indexed by data_label. Each entry is dict with entries
‘prob’ for the probability and ‘count’ for the number of days with any
data; ‘bin_x’, ‘bin_y’, and ‘bin_z’ are also returned if requested.
Note that arrays are organized for direct plotting, z,y,x.

	Return type

	dictionary

Note

Season delineated by the bounds attached to Instrument object.

Average

Instrument independent seasonal averaging routine. Supports averaging
1D and 2D data.

Deprecated since version 2.2.0: ssnl.avg will be removed in pysat 3.0.0, it will be added to pysatSeasons:
https://github.com/pysat/pysatSeasons

	
pysat.ssnl.avg.mean_by_day(inst, data_label)

	Mean of data_label by day over Instrument.bounds

Deprecated since version 2.2.0: mean_by_day will be removed in pysat 3.0.0, it will
be added to pysatSeasons

	Parameters

	data_label (string) – string identifying data product to be averaged

	Returns

	mean – simple mean of data_label indexed by day

	Return type

	pandas Series

	
pysat.ssnl.avg.mean_by_file(inst, data_label)

	Mean of data_label by orbit over Instrument.bounds

Deprecated since version 2.2.0: mean_by_file will be removed in pysat 3.0.0, it will
be added to pysatSeasons

	Parameters

	data_label (string) – string identifying data product to be averaged

	Returns

	mean – simple mean of data_label indexed by start of each file

	Return type

	pandas Series

	
pysat.ssnl.avg.mean_by_orbit(inst, data_label)

	Mean of data_label by orbit over Instrument.bounds

Deprecated since version 2.2.0: mean_by_orbit will be removed in pysat 3.0.0, it will
be added to pysatSeasons

	Parameters

	data_label (string) – string identifying data product to be averaged

	Returns

	mean – simple mean of data_label indexed by start of each orbit

	Return type

	pandas Series

	
pysat.ssnl.avg.median1D(const, bin1, label1, data_label, auto_bin=True, returnData=False)

	Return a 1D median of data_label over a season and label1

Deprecated since version 2.2.0: median1D will be removed in pysat 3.0.0, it will
be added to pysatSeasons

	Parameters

	
	const (Constellation or Instrument) – Constellation or Instrument object

	bin1 ((array-like)) – List holding [min, max, number of bins] or array-like containing
bin edges

	label1 ((string)) – data column name that the binning will be performed over (i.e., lat)

	data_label ((list-like)) – contains strings identifying data product(s) to be averaged

	auto_bin (if True, function will create bins from the min, max and) – number of bins. If false, bin edges must be manually entered

	returnData ((boolean)) – Return data in output dictionary as well as statistics

	Returns

	median – 1D median accessed by data_label as a function of label1
over the season delineated by bounds of passed instrument objects.
Also includes ‘count’ and ‘avg_abs_dev’ as well as the values of
the bin edges in ‘bin_x’

	Return type

	dictionary

	
pysat.ssnl.avg.median2D(const, bin1, label1, bin2, label2, data_label, returnData=False, auto_bin=True)

	Return a 2D average of data_label over a season and label1, label2.

Deprecated since version 2.2.0: median2D will be removed in pysat 3.0.0, it will
be added to pysatSeasons

	Parameters

	
	const (Constellation or Instrument) –

	bin# ([min, max, number of bins], or array-like containing bin edges) –

	label# (string) – identifies data product for bin#

	data_label (list-like) – contains strings identifying data product(s) to be averaged

	auto_bin (if True, function will create bins from the min, max and) – number of bins. If false, bin edges must be manually entered

	Returns

	median – 2D median accessed by data_label as a function of label1 and label2
over the season delineated by bounds of passed instrument objects.
Also includes ‘count’ and ‘avg_abs_dev’ as well as the values of
the bin edges in ‘bin_x’ and ‘bin_y’.

	Return type

	dictionary

Plot

	
pysat.ssnl.plot.scatterplot(inst, labelx, labely, data_label, datalim, xlim=None, ylim=None)

	Return scatterplot of data_label(s) as functions of labelx,y over a
season.

Deprecated since version 2.2.0: scatterplot will be removed in pysat 3.0.0, it will
be added to pysatSeasons

	Parameters

	
	labelx (string) – data product for x-axis

	labely (string) – data product for y-axis

	data_label (string, array-like of strings) – data product(s) to be scatter plotted

	datalim (numyp array) – plot limits for data_label

	Returns

	
	Returns a list of scatter plots of data_label as a function

	of labelx and labely over the season delineated by start and

	stop datetime objects.

Utilities

pysat.utils - utilities for running pysat

pysat.utils contains a number of functions used
throughout the pysat package. This includes conversion
of formats, loading of files, and user-supplied info
for the pysat data directory structure.

Coordinates

pysat.utils.coords - coordinate transformations for pysat

pysat.utils.coords contains a number of coordinate-transformation
functions used throughout the pysat package.

	
pysat.utils.coords.adjust_cyclic_data(samples, high=6.283185307179586, low=0.0)

	Adjust cyclic values such as longitude to a different scale

	Parameters

	
	samples (array_like) – Input array

	high (float or int) – Upper boundary for circular standard deviation range (default=2 pi)

	low (float or int) – Lower boundary for circular standard deviation range (default=0)

	axis (int or NoneType) – Axis along which standard deviations are computed. The default is to
compute the standard deviation of the flattened array

	Returns

	out_samples – Circular standard deviation

	Return type

	float

	
pysat.utils.coords.calc_solar_local_time(inst, lon_name=None, slt_name='slt')

	Append solar local time to an instrument object

	Parameters

	
	inst (pysat.Instrument instance) – instrument object to be updated

	lon_name (string) – name of the longtiude data key (assumes data are in degrees)

	slt_name (string) – name of the output solar local time data key (default=’slt’)

	Returns

	

	Return type

	updates instrument data in column specified by slt_name

	
pysat.utils.coords.geodetic_to_geocentric(lat_in, lon_in=None, inverse=False)

	Converts position from geodetic to geocentric or vice-versa.

Deprecated since version 2.2.0: geodetic_to_geocentric will be removed in pysat 3.0.0, it will
be added to pysatMadrigal

	Parameters

	
	lat_in (float) – latitude in degrees.

	lon_in (float or NoneType) – longitude in degrees. Remains unchanged, so does not need to be
included. (default=None)

	inverse (bool) – False for geodetic to geocentric, True for geocentric to geodetic.
(default=False)

	Returns

	
	lat_out (float) – latitude [degree] (geocentric/detic if inverse=False/True)

	lon_out (float or NoneType) – longitude [degree] (geocentric/detic if inverse=False/True)

	rad_earth (float) – Earth radius [km] (geocentric/detic if inverse=False/True)

Notes

Uses WGS-84 values

References

Based on J.M. Ruohoniemi’s geopack and R.J. Barnes radar.pro

	
pysat.utils.coords.geodetic_to_geocentric_horizontal(lat_in, lon_in, az_in, el_in, inverse=False)

	Converts from local horizontal coordinates in a geodetic system to local
horizontal coordinates in a geocentric system

Deprecated since version 2.2.0: geodetic_to_geocentric_horizontal will be removed in pysat 3.0.0, it
will be added to pysatMadrigal

	Parameters

	
	lat_in (float) – latitude in degrees of the local horizontal coordinate system center

	lon_in (float) – longitude in degrees of the local horizontal coordinate system center

	az_in (float) – azimuth in degrees within the local horizontal coordinate system

	el_in (float) – elevation in degrees within the local horizontal coordinate system

	inverse (bool) – False for geodetic to geocentric, True for inverse (default=False)

	Returns

	
	lat_out (float) – latitude in degrees of the converted horizontal coordinate system
center

	lon_out (float) – longitude in degrees of the converted horizontal coordinate system
center

	rad_earth (float) – Earth radius in km at the geocentric/detic (False/True) location

	az_out (float) – azimuth in degrees of the converted horizontal coordinate system

	el_out (float) – elevation in degrees of the converted horizontal coordinate system

References

Based on J.M. Ruohoniemi’s geopack and R.J. Barnes radar.pro

	
pysat.utils.coords.global_to_local_cartesian(x_in, y_in, z_in, lat_cent, lon_cent, rad_cent, inverse=False)

	Converts a position from global to local cartesian or vice-versa

Deprecated since version 2.2.0: global_to_local_cartesian will be removed in pysat 3.0.0, it will
be added to pysatMadrigal

	Parameters

	
	x_in (float) – global or local cartesian x in km (inverse=False/True)

	y_in (float) – global or local cartesian y in km (inverse=False/True)

	z_in (float) – global or local cartesian z in km (inverse=False/True)

	lat_cent (float) – geocentric latitude in degrees of local cartesian system origin

	lon_cent (float) – geocentric longitude in degrees of local cartesian system origin

	rad_cent (float) – distance from center of the Earth in km of local cartesian system
origin

	inverse (bool) – False to convert from global to local cartesian coodiantes, and True
for the inverse (default=False)

	Returns

	
	x_out (float) – local or global cartesian x in km (inverse=False/True)

	y_out (float) – local or global cartesian y in km (inverse=False/True)

	z_out (float) – local or global cartesian z in km (inverse=False/True)

Notes

The global cartesian coordinate system has its origin at the center of the
Earth, while the local system has its origin specified by the input
latitude, longitude, and radius. The global system has x intersecting
the equatorial plane and the prime meridian, z pointing North along the
rotational axis, and y completing the right-handed coodinate system.
The local system has z pointing up, y pointing North, and x pointing East.

	
pysat.utils.coords.local_horizontal_to_global_geo(az, el, dist, lat_orig, lon_orig, alt_orig, geodetic=True)

	Convert from local horizontal coordinates to geodetic or geocentric
coordinates

Deprecated since version 2.2.0: local_horizontal_to_global_geo will be removed in pysat 3.0.0, it will
be added to pysatMadrigal

	Parameters

	
	az (float) – Azimuth (angle from North) of point in degrees

	el (float) – Elevation (angle from ground) of point in degrees

	dist (float) – Distance from origin to point in km

	lat_orig (float) – Latitude of origin in degrees

	lon_orig (float) – Longitude of origin in degrees

	alt_orig (float) – Altitude of origin in km from the surface of the Earth

	geodetic (bool) – True if origin coordinates are geodetic, False if they are geocentric.
Will return coordinates in the same system as the origin input.
(default=True)

	Returns

	
	lat_pnt (float) – Latitude of point in degrees

	lon_pnt (float) – Longitude of point in degrees

	rad_pnt (float) – Distance to the point from the centre of the Earth in km

References

Based on J.M. Ruohoniemi’s geopack and R.J. Barnes radar.pro

	
pysat.utils.coords.scale_units(out_unit, in_unit)

	Determine the scaling factor between two units

Deprecated since version 2.2.0: utils.coords.scale_units will be removed in pysat 3.0.0, it will be
moved to utils.scale_units

	Parameters

	
	out_unit (str) – Desired unit after scaling

	in_unit (str) – Unit to be scaled

	Returns

	unit_scale – Scaling factor that will convert from in_units to out_units

	Return type

	float

	
pysat.utils.coords.spherical_to_cartesian(az_in, el_in, r_in, inverse=False)

	Convert a position from spherical to cartesian, or vice-versa

Deprecated since version 2.2.0: spherical_to_cartesian will be removed in pysat 3.0.0, it will
be added to pysatMadrigal

	Parameters

	
	az_in (float) – azimuth/longitude in degrees or cartesian x in km (inverse=False/True)

	el_in (float) – elevation/latitude in degrees or cartesian y in km (inverse=False/True)

	r_in (float) – distance from origin in km or cartesian z in km (inverse=False/True)

	inverse (boolian) – False to go from spherical to cartesian and True for the inverse

	Returns

	
	x_out (float) – cartesian x in km or azimuth/longitude in degrees (inverse=False/True)

	y_out (float) – cartesian y in km or elevation/latitude in degrees (inverse=False/True)

	z_out (float) – cartesian z in km or distance from origin in km (inverse=False/True)

Notes

This transform is the same for local or global spherical/cartesian
transformations.

Returns elevation angle (angle from the xy plane) rather than zenith angle
(angle from the z-axis)

	
pysat.utils.coords.update_longitude(inst, lon_name=None, high=180.0, low=-180.0)

	Update longitude to the desired range

	Parameters

	
	inst (pysat.Instrument instance) – instrument object to be updated

	lon_name (string) – name of the longtiude data

	high (float) – Highest allowed longitude value (default=180.0)

	low (float) – Lowest allowed longitude value (default=-180.0)

	Returns

	

	Return type

	updates instrument data in column ‘lon_name’

Statistics

pysat.utils.stats - statistical operations in pysat

pysat.coords contains a number of coordinate-transformation
functions used throughout the pysat package.

	
pysat.utils.stats.median1D(self, bin_params, bin_label, data_label)

	Calculates the median for a series of binned data.

Deprecated since version 2.2.0: median1D will be removed in pysat 3.0.0, a
similar function will be added to pysatSeasons

	Parameters

	
	bin_params (array_like) – Input array defining the bins in which the median is calculated

	bin_label (string) – Name of data parameter which the bins cover

	data_level (string) – Name of data parameter to take the median of in each bin

	Returns

	medians – The median data value in each bin

	Return type

	array_like

	
pysat.utils.stats.nan_circmean(samples, high=6.283185307179586, low=0.0, axis=None)

	NaN insensitive version of scipy’s circular mean routine

Deprecated since version 2.1.0: nan_circmean will be removed in pysat 3.0.0, this functionality has
been added to scipy 1.4

	Parameters

	
	samples (array_like) – Input array

	high (float or int) – Upper boundary for circular standard deviation range (default=2 pi)

	low (float or int) – Lower boundary for circular standard deviation range (default=0)

	axis (int or NoneType) – Axis along which standard deviations are computed. The default is to
compute the standard deviation of the flattened array

	Returns

	circmean – Circular mean

	Return type

	float

	
pysat.utils.stats.nan_circstd(samples, high=6.283185307179586, low=0.0, axis=None)

	NaN insensitive version of scipy’s circular standard deviation routine

Deprecated since version 2.1.0: nan_circstd will be removed in pysat 3.0.0, this functionality has
been added to scipy 1.4

	Parameters

	
	samples (array_like) – Input array

	high (float or int) – Upper boundary for circular standard deviation range (default=2 pi)

	low (float or int) – Lower boundary for circular standard deviation range (default=0)

	axis (int or NoneType) – Axis along which standard deviations are computed. The default is to
compute the standard deviation of the flattened array

	Returns

	circstd – Circular standard deviation

	Return type

	float

Time

pysat.utils.time - date and time operations in pysat

pysat.utils.time contains a number of functions used throughout
the pysat package, including interactions with datetime objects,
seasons, and calculation of solar local time

	
pysat.utils.time.calc_freq(index)

	Determine the frequency for a time index

	Parameters

	index ((array-like)) – Datetime list, array, or Index

	Returns

	freq – Frequency string as described in Pandas Offset Aliases

	Return type

	(str)

Notes

Calculates the minimum time difference and sets that as the frequency.

To reduce the amount of calculations done, the returned frequency is
either in seconds (if no sub-second resolution is found) or nanoseconds.

	
pysat.utils.time.create_date_range(start, stop, freq='D')

	Return array of datetime objects using input frequency from start to stop

Supports single datetime object or list, tuple, ndarray of start and
stop dates.

freq codes correspond to pandas date_range codes, D daily, M monthly,
S secondly

	
pysat.utils.time.create_datetime_index(year=None, month=None, day=None, uts=None)

	Create a timeseries index using supplied year, month, day, and ut in
seconds.

	Parameters

	
	year (array_like of ints) –

	month (array_like of ints or None) –

	day (array_like of ints) – for day (default) or day of year (use month=None)

	uts (array_like of floats) –

	Returns

	

	Return type

	Pandas timeseries index.

Note

Leap seconds have no meaning here.

	
pysat.utils.time.getyrdoy(date)

	Return a tuple of year, day of year for a supplied datetime object.

	Parameters

	date (datetime.datetime) – Datetime object

	Returns

	
	year (int) – Integer year

	doy (int) – Integer day of year

	
pysat.utils.time.parse_date(str_yr, str_mo, str_day, str_hr='0', str_min='0', str_sec='0', century=2000)

	Basic date parser for file reading

	Parameters

	
	str_yr (string) – String containing the year (2 or 4 digits)

	str_mo (string) – String containing month digits

	str_day (string) – String containing day of month digits

	str_hr (string ('0')) – String containing the hour of day

	str_min (string ('0')) – String containing the minutes of hour

	str_sec (string ('0')) – String containing the seconds of minute

	century (int (2000)) – Century, only used if str_yr is a 2-digit year

	Returns

	out_date – Pandas datetime object

	Return type

	pds.datetime

	
pysat.utils.time.season_date_range(start, stop, freq='D')

	Deprecated Function, will be removed in future version.

Deprecated since version 2.1.0: season_date_range will be removed in pysat 3.0.0, this will be
replaced by create_date_range

Contributing

Bug reports, feature suggestions and other contributions are greatly
appreciated! Pysat is a community-driven project and welcomes both feedback and
contributions.

Short version

	Submit bug reports and feature requests at GitHub [https://github.com/rstoneback/pysat/issues]

	Make pull requests to the develop branch

Bug reports

When reporting a bug [https://github.com/rstoneback/pysat/issues] please
include:

	Your operating system name and version

	Any details about your local setup that might be helpful in troubleshooting

	Detailed steps to reproduce the bug

Feature requests and feedback

The best way to send feedback is to file an issue at
GitHub [https://github.com/rstoneback/pysat/issues].

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions
are welcome :)

Development

To set up pysat for local development:

	Fork pysat on GitHub [https://github.com/rstoneback/pysat/fork].

	Clone your fork locally:

git clone git@github.com:your_name_here/pysat.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally. Tests for new instruments are
performed automatically. Tests for custom functions should be added to the
appropriately named file in pysat/tests. For example, custom functions
for the OMNI HRO data are tested in pysat/tests/test_omni_hro.py. If no
test file exists, then you should create one. This testing uses nose, which
will run tests on any python file in the test directory that starts with
test_.

	When you’re done making changes, run all the checks to ensure that nothing
is broken on your local system:

nosetests -vs pysat

	Update/add documentation (in docs), if relevant

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Brief description of your changes"
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website. Pull requests should be
made to the develop branch.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code, just
make a pull request. Pull requests should be made to the develop branch.

For merging, you should:

	Include an example for use

	Add a note to CHANGELOG.md about the changes

	Ensure that all checks passed (current checks include Scrutinizer, Travis-CI,
and Coveralls) 1

	1

	If you don’t have all the necessary Python versions available locally or
have trouble building all the testing environments, you can rely on
Travis to run the tests for each change you add in the pull request.
Because testing here will delay tests by other developers, please ensure
that the code passes all tests on your local system first.

Frequently Asked Questions

Q. Does pysat support data from … mission?

A. Possibly! A full list of supported instruments / models / scientific
indices can be found here:
https://pysat.readthedocs.io/en/latest/supported_instruments.html
Things that are currently in development can be found here:
https://github.com/pysat/pysat/blob/develop/docs/supported_instruments.rst

Q. Yeah, but what about …?

A. If a dataset is not in the current list of instruments or in the list on
the develop branch, feel free to add it as a pull request. For the most part,
pysat makes it simple to add instruments. Templates are included for the
NASA CDAWeb and Madrigal databases. Check out info about adding an
nstrument here: https://pysat.readthedocs.io/en/latest/new_instrument.html#
and make sure to read the guidelines for pull requests here:
https://github.com/rstoneback/pysat/blob/main/CONTRIBUTING.md

Got a question? Add it to the wiki FAQ:
https://github.com/rstoneback/pysat/wiki/FAQ

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pysat	

 	
 	
 pysat.instruments.champ_star	

 	
 	
 pysat.instruments.cnofs_ivm	

 	
 	
 pysat.instruments.cnofs_plp	

 	
 	
 pysat.instruments.cnofs_vefi	

 	
 	
 pysat.instruments.cosmic_gps	

 	
 	
 pysat.instruments.de2_lang	

 	
 	
 pysat.instruments.de2_nacs	

 	
 	
 pysat.instruments.de2_rpa	

 	
 	
 pysat.instruments.de2_wats	

 	
 	
 pysat.instruments.demeter_iap	

 	
 	
 pysat.instruments.dmsp_ivm	

 	
 	
 pysat.instruments.icon_euv	

 	
 	
 pysat.instruments.icon_fuv	

 	
 	
 pysat.instruments.icon_ivm	

 	
 	
 pysat.instruments.icon_mighti	

 	
 	
 pysat.instruments.iss_fpmu	

 	
 	
 pysat.instruments.jro_isr	

 	
 	
 pysat.instruments.methods.demeter	

 	
 	
 pysat.instruments.methods.general	

 	
 	
 pysat.instruments.methods.icon	

 	
 	
 pysat.instruments.methods.madrigal	

 	
 	
 pysat.instruments.methods.nasa_cdaweb	

 	
 	
 pysat.instruments.methods.sw	

 	
 	
 pysat.instruments.omni_hro	

 	
 	
 pysat.instruments.rocsat1_ivm	

 	
 	
 pysat.instruments.sport_ivm	

 	
 	
 pysat.instruments.superdarn_grdex	

 	
 	
 pysat.instruments.supermag_magnetometer	

 	
 	
 pysat.instruments.sw_dst	

 	
 	
 pysat.instruments.sw_f107	

 	
 	
 pysat.instruments.sw_kp	

 	
 	
 pysat.instruments.templates.netcdf_pandas	

 	
 	
 pysat.instruments.templates.template_cdaweb_instrument	

 	
 	
 pysat.instruments.templates.template_instrument	

 	
 	
 pysat.instruments.timed_saber	

 	
 	
 pysat.instruments.timed_see	

 	
 	
 pysat.instruments.ucar_tiegcm	

 	
 	
 pysat.ssnl.avg	

 	
 	
 pysat.ssnl.occur_prob	

 	
 	
 pysat.ssnl.plot	

 	
 	
 pysat.utils	

 	
 	
 pysat.utils.coords	

 	
 	
 pysat.utils.stats	

 	
 	
 pysat.utils.time	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | Y

A

 	
 	accept_default_labels() (pysat.Meta method)

 	add() (pysat.Constellation method)

 	(pysat.Custom method)

 	add_drift_geo_coord() (in module pysat.instruments.demeter_iap)

 	add_drift_lgm_coord() (in module pysat.instruments.demeter_iap)

 	add_drift_sat_coord() (in module pysat.instruments.demeter_iap)

 	add_drift_unit_vectors() (in module pysat.instruments.dmsp_ivm)

 	
 	add_drifts_polar_cap_x_y() (in module pysat.instruments.dmsp_ivm)

 	adjust_cyclic_data() (in module pysat.utils.coords)

 	apply_default_labels() (pysat.Meta method)

 	attach() (pysat.Custom method)

 	attr_case_name() (pysat.Meta method)

 	attrs() (pysat.Meta method)

 	axis_label (pysat.Meta attribute)

B

 	
 	base_path (pysat.Files attribute)

 	bounds (pysat.Instrument attribute), [1]

 	
 	by_orbit2D() (in module pysat.ssnl.occur_prob)

 	by_orbit3D() (in module pysat.ssnl.occur_prob)

 	bytes_to_float() (in module pysat.instruments.methods.demeter)

C

 	
 	calc_daily_Ap() (in module pysat.instruments.methods.sw)

 	calc_freq() (in module pysat.utils.time)

 	calc_solar_local_time() (in module pysat.utils.coords)

 	calculate_clock_angle() (in module pysat.instruments.omni_hro)

 	calculate_imf_steadiness() (in module pysat.instruments.omni_hro)

 	cedar_rules() (in module pysat.instruments.methods.madrigal)

 	clean() (in module pysat.instruments.templates.template_cdaweb_instrument)

 	(in module pysat.instruments.templates.template_instrument)

 	clear() (pysat.Custom method)

 	combine_f107() (in module pysat.instruments.methods.sw)

 	combine_kp() (in module pysat.instruments.methods.sw)

 	
 	concat() (pysat.Meta method)

 	concat_data() (pysat.Instrument method)

 	Constellation (class in pysat)

 	convert_ap_to_kp() (in module pysat.instruments.methods.sw)

 	convert_timestamp_to_datetime() (in module pysat.instruments.methods.general)

 	copy() (pysat.Instrument method)

 	create_date_range() (in module pysat.utils.time)

 	create_datetime_index() (in module pysat.utils.time)

 	current (pysat.Orbits attribute)

 	Custom (class in pysat)

 	custom (pysat.Instrument attribute)

D

 	
 	daily2D() (in module pysat.ssnl.occur_prob)

 	daily3D() (in module pysat.ssnl.occur_prob)

 	data (pysat.Instrument attribute)

 	(pysat.Meta attribute)

 	data_mod() (pysat.Constellation method)

 	data_path (pysat.Files attribute)

 	date (pysat.Instrument attribute), [1]

 	default() (in module pysat.instruments.templates.template_cdaweb_instrument)

 	(in module pysat.instruments.templates.template_instrument)

 	desc_label (pysat.Meta attribute)

 	
 	difference() (pysat.Constellation method)

 	download() (in module pysat.instruments.methods.demeter)

 	(in module pysat.instruments.methods.madrigal)

 	(in module pysat.instruments.methods.nasa_cdaweb)

 	(in module pysat.instruments.templates.netcdf_pandas), [1]

 	(in module pysat.instruments.templates.template_cdaweb_instrument)

 	(in module pysat.instruments.templates.template_instrument)

 	(pysat.Instrument method)

 	download_updated_files() (pysat.Instrument method)

 	doy (pysat.Instrument attribute)

 	drop() (pysat.Meta method)

E

 	
 	empty (pysat.Instrument attribute)

 	(pysat.Meta attribute)

 	
 	export_nan (pysat.Meta attribute)

F

 	
 	Files (class in pysat)

 	files (pysat.Instrument attribute)

 	fill_label (pysat.Meta attribute)

 	
 	filter_data_single_date() (in module pysat.instruments.methods.madrigal)

 	filter_geoquiet() (in module pysat.instruments.sw_kp)

 	from_csv() (pysat.Meta class method)

 	from_os() (pysat.Files class method)

G

 	
 	generic_meta_translator() (pysat.Instrument method)

 	geodetic_to_geocentric() (in module pysat.utils.coords)

 	geodetic_to_geocentric_horizontal() (in module pysat.utils.coords)

 	get_file_array() (pysat.Files method)

 	
 	get_index() (pysat.Files method)

 	get_new() (pysat.Files method)

 	getyrdoy() (in module pysat.utils.time)

 	global_to_local_cartesian() (in module pysat.utils.coords)

H

 	
 	has_attr() (pysat.Meta method)

I

 	
 	index (pysat.Instrument attribute)

 	init() (in module pysat.instruments.templates.netcdf_pandas), [1]

 	(in module pysat.instruments.templates.template_instrument)

 	
 	Instrument (class in pysat)

K

 	
 	keep() (pysat.Meta method)

 	keys() (pysat.Meta method)

 	
 	keys_nD() (pysat.Meta method)

 	kwargs (pysat.Instrument attribute)

L

 	
 	list_files() (in module pysat.instruments.methods.general)

 	(in module pysat.instruments.methods.nasa_cdaweb)

 	(in module pysat.instruments.templates.netcdf_pandas), [1]

 	(in module pysat.instruments.templates.template_cdaweb_instrument)

 	(in module pysat.instruments.templates.template_instrument)

 	list_remote_files() (in module pysat.instruments.methods.icon)

 	(in module pysat.instruments.methods.nasa_cdaweb)

 	(in module pysat.instruments.templates.template_cdaweb_instrument)

 	(in module pysat.instruments.templates.template_instrument)

 	load() (in module pysat.instruments.methods.madrigal)

 	(in module pysat.instruments.methods.nasa_cdaweb)

 	(in module pysat.instruments.templates.netcdf_pandas), [1]

 	(in module pysat.instruments.templates.template_cdaweb_instrument)

 	(in module pysat.instruments.templates.template_instrument)

 	(pysat.Constellation method)

 	(pysat.Instrument method)

 	(pysat.Orbits method)

 	
 	load_attitude_parameters() (in module pysat.instruments.methods.demeter)

 	load_binary_file() (in module pysat.instruments.methods.demeter)

 	load_general_header() (in module pysat.instruments.methods.demeter)

 	load_location_parameters() (in module pysat.instruments.methods.demeter)

 	local_horizontal_to_global_geo() (in module pysat.utils.coords)

M

 	
 	manual_org (pysat.Files attribute)

 	max_label (pysat.Meta attribute)

 	mean_by_day() (in module pysat.ssnl.avg)

 	mean_by_file() (in module pysat.ssnl.avg)

 	mean_by_orbit() (in module pysat.ssnl.avg)

 	median1D() (in module pysat.ssnl.avg)

 	(in module pysat.utils.stats)

 	
 	median2D() (in module pysat.ssnl.avg)

 	merge() (pysat.Meta method)

 	Meta (class in pysat)

 	meta (pysat.Instrument attribute)

 	min_label (pysat.Meta attribute)

N

 	
 	name_label (pysat.Meta attribute)

 	nan_circmean() (in module pysat.utils.stats)

 	nan_circstd() (in module pysat.utils.stats)

 	
 	next() (pysat.Instrument method)

 	(pysat.Orbits method)

 	notes_label (pysat.Meta attribute)

O

 	
 	Orbits (class in pysat)

 	
 	orbits (pysat.Instrument attribute)

P

 	
 	parse_date() (in module pysat.utils.time)

 	plot_label (pysat.Meta attribute)

 	pop() (pysat.Meta method)

 	prev() (pysat.Instrument method)

 	(pysat.Orbits method)

 	pysat.instruments.champ_star (module)

 	pysat.instruments.cnofs_ivm (module)

 	pysat.instruments.cnofs_plp (module)

 	pysat.instruments.cnofs_vefi (module)

 	pysat.instruments.cosmic_gps (module)

 	pysat.instruments.de2_lang (module)

 	pysat.instruments.de2_nacs (module)

 	pysat.instruments.de2_rpa (module)

 	pysat.instruments.de2_wats (module)

 	pysat.instruments.demeter_iap (module)

 	pysat.instruments.dmsp_ivm (module)

 	pysat.instruments.icon_euv (module)

 	pysat.instruments.icon_fuv (module)

 	pysat.instruments.icon_ivm (module)

 	pysat.instruments.icon_mighti (module)

 	pysat.instruments.iss_fpmu (module)

 	pysat.instruments.jro_isr (module)

 	pysat.instruments.methods.demeter (module)

 	pysat.instruments.methods.general (module)

 	
 	pysat.instruments.methods.icon (module)

 	pysat.instruments.methods.madrigal (module)

 	pysat.instruments.methods.nasa_cdaweb (module)

 	pysat.instruments.methods.sw (module)

 	pysat.instruments.omni_hro (module)

 	pysat.instruments.rocsat1_ivm (module)

 	pysat.instruments.sport_ivm (module)

 	pysat.instruments.superdarn_grdex (module)

 	pysat.instruments.supermag_magnetometer (module)

 	pysat.instruments.sw_dst (module)

 	pysat.instruments.sw_f107 (module)

 	pysat.instruments.sw_kp (module)

 	pysat.instruments.templates.netcdf_pandas (module), [1]

 	pysat.instruments.templates.template_cdaweb_instrument (module)

 	pysat.instruments.templates.template_instrument (module)

 	pysat.instruments.timed_saber (module)

 	pysat.instruments.timed_see (module)

 	pysat.instruments.ucar_tiegcm (module)

 	pysat.ssnl.avg (module)

 	pysat.ssnl.occur_prob (module)

 	pysat.ssnl.plot (module)

 	pysat.utils (module)

 	pysat.utils.coords (module)

 	pysat.utils.stats (module)

 	pysat.utils.time (module)

R

 	
 	refresh() (pysat.Files method)

 	remote_date_range() (pysat.Instrument method)

 	
 	remote_file_list() (pysat.Instrument method)

 	remove_leading_text() (in module pysat.instruments.methods.general)

S

 	
 	scale_label (pysat.Meta attribute)

 	scale_units() (in module pysat.utils.coords)

 	scatterplot() (in module pysat.ssnl.plot)

 	season_date_range() (in module pysat.utils.time)

 	set_bounds() (pysat.Constellation method)

 	
 	set_metadata() (in module pysat.instruments.methods.demeter)

 	smooth_ram_drifts() (in module pysat.instruments.dmsp_ivm)

 	spherical_to_cartesian() (in module pysat.utils.coords)

 	ssl_download() (in module pysat.instruments.methods.icon)

 	start_date (pysat.Files attribute)

 	stop_date (pysat.Files attribute)

T

 	
 	time_shift_to_magnetic_poles() (in module pysat.instruments.omni_hro)

 	to_netcdf4() (pysat.Instrument method)

 	
 	today() (pysat.Instrument method)

 	tomorrow() (pysat.Instrument method)

 	transfer_attributes_to_instrument() (pysat.Meta method)

U

 	
 	units_label (pysat.Meta attribute)

 	update_DMSP_ephemeris() (in module pysat.instruments.dmsp_ivm)

 	
 	update_files (pysat.Files attribute)

 	update_longitude() (in module pysat.utils.coords)

V

 	
 	var_case_name() (pysat.Meta method)

 	
 	variables (pysat.Instrument attribute)

Y

 	
 	yesterday() (pysat.Instrument method)

 	
 	yr (pysat.Instrument attribute)

 _static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to pysat’s documentation!

 		
 Introduction

 		
 Citations in the pysat ecosystem

 		
 Installation

 		
 Quick-Start

 		
 Tutorial

 		
 Basics

 		
 Verbosity

 		
 Custom Functions

 		
 Initial Instrument Independence

 		
 Iteration

 		
 Orbit Support

 		
 Ground Based Instruments

 		
 Iteration and Instrument Independent Analysis

 		
 Summary Flow Charts

 		
 Sample Scientific Analysis

 		
 Seasonal Occurrence by Orbit

 		
 Orbit-by-Orbit Plots

 		
 Seasonal Averaging of Ion Drifts and Density Profiles

 		
 Supported Instruments

 		
 C/NOFS IVM

 		
 Properties

 		
 C/NOFS PLP

 		
 Properties

 		
 C/NOFS VEFI

 		
 Properties

 		
 CHAMP-STAR

 		
 Properties

 		
 Authors

 		
 COSMIC GPS

 		
 Properties

 		
 DE2 LANG

 		
 Properties

 		
 Authors

 		
 DE2 NACS

 		
 Properties

 		
 Authors

 		
 DE2 RPA

 		
 Properties

 		
 Authors

 		
 DE2 WATS

 		
 Properties

 		
 Authors

 		
 Demeter IAP

 		
 Properties

 		
 Custom Functions

 		
 DMSP IVM

 		
 Properties

 		
 Custom Functions

 		
 ICON EUV

 		
 Properties

 		
 Authors

 		
 ICON FUV

 		
 Properties

 		
 Authors

 		
 ICON IVM

 		
 Properties

 		
 Author

 		
 ICON MIGHTI

 		
 Properties

 		
 Authors

 		
 ISS-FPMU

 		
 Properties

 		
 JRO ISR

 		
 Properties

 		
 OMNI_HRO

 		
 Properties

 		
 Custom Functions

 		
 ROCSAT-1 IVM

 		
 Properties

 		
 SPORT IVM

 		
 SuperDARN

 		
 Properties

 		
 SuperMAG

 		
 Properties

 		
 SW Dst

 		
 Properties

 		
 SW F107

 		
 Properties

 		
 SW Kp

 		
 Custom Functions

 		
 TIMED/SABER

 		
 Properties

 		
 Authors

 		
 TIMED/SEE

 		
 Properties

 		
 UCAR TIEGCM

 		
 Properties

 		
 Adding a New Instrument

 		
 Naming Conventions

 		
 Required Routines

 		
 Optional Routines and Support

 		
 Logging

 		
 Testing Support

 		
 Data Acknowledgements

 		
 Supported Instrument Templates

 		
 General

 		
 NASA CDAWeb

 		
 Madrigal

 		
 API

 		
 Instrument

 		
 Instrument Methods

 		
 Demeter

 		
 General

 		
 NASA CDAWeb

 		
 NASA ICON

 		
 Madrigal

 		
 Space Weather

 		
 Instrument Templates

 		
 General Instrument

 		
 Madrigal Pandas

 		
 NASA CDAWeb Instrument

 		
 netCDF Pandas

 		
 Constellation

 		
 Custom

 		
 Files

 		
 Meta

 		
 Orbits

 		
 Seasonal Analysis

 		
 Occurrence Probability

 		
 Average

 		
 Plot

 		
 Utilities

 		
 pysat.utils - utilities for running pysat

 		
 Coordinates

 		
 Statistics

 		
 Time

 		
 Contributing

 		
 Short version

 		
 Bug reports

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Frequently Asked Questions

_static/up-pressed.png

_images/poweredbypysat.png

_images/pysat_load_flow_chart.png
Pysat Loading Process

User's
Filepaths Cleaning addi Custom
Level Time Functions
Default
Instrument gumd Clean Data [gmd Pad Data Gemd Nano-Kernel
Function

|

3 Day Rolling Remove
Data Window Pad

Instrument functions provided by

v

platform_name.py

Legend

Instrument pysat

pysat

Information

Specific Function § Function

_images/orbit_00000.png
T

Sun May 9 00:00:00 2010 - Sun May 9 01:42:57 2010

~

Interp. Flag

I

Il

[

°

25000
'z 20000

15000

10000

~10000

5000

T

T

-10

T

T

B_north

B_west

dB_mer

dB_par

dB_zon

gl LI ALY

60

120

180
longitude

240

300

360

_images/ssnl_occurrence_by_orbit_demo.png
Latitude

Latitude

Occurrence Probability Delta-B Meridional > 0
- =

Longitude

10

0.8

0.6

0.4

02

0.0

y

Occurrence Probabil

_static/ajax-loader.gif

_images/ssnl_median_ivm_cosmic_1d.png
IVM Meridional lon Drifts

24

(s/w) yua uop
=)

g 8 e

w1 82071 Jn2ubeN

COSMIC Log Density Maximum

Aysuaq 601
@ o+ & o ®
W & W om oW T

C——s——

(i) 2pnIngy
w o w g w e g
B2 88 R 318
R B HRIAR]R

T —r——

COSMIC Altitude Density Maximum

< @ ~ ©
3 2 B

awi [e207 Jejos

g 8 e

awi [e207 Jejos

24

225
200

£
>
T
S
El
G
g
&
o
2
7
g
e
Q
=
%
o
o

(ut) BI3H 3[ed5
w o w g
28 8 8 w
5 48 3 38 &

o ——

g 8 e

awi [e207 Jejos

24

Apex Longitude

_images/ssnl_median_ivm_cosmic_2d.png
Ausuaq 601 Ausuaq 601 Ausuaq 601 Ausuaq 601
m 9o n o

< F omow
2

2

n 9w w9 0 m 9w o 109 on m g me 109 on w9 oW

© © n © © A & F @MW © © n & F mom © © n <
o o
2 2

o
L
2
2

-

o o o o
a a a a
S S S S
g 2 8 g 2 8 g 2 8 g 2 8
2 #8 8 2 8 R 2 #8 8 2 8 R

(wnt) apmnpy (wnt) apmnpy (wnt) apmnpy (wny) apmniy

ngitudes 15-30
ngitudes 30-45

Apex Longitudes 0-15
Solar Local Time of Profile Maximum Density

2 2 2 2
2 2 2 2
8 8 8 8

